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CAPILLARY PRESSURE ANALYSIS ACROSS A LAMELLA
SEPARATING BUBBLES IN CONSTRICTED CHANNELS
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Abstract

The quantitative descriptions for calculating
the position and curvature of a lamella between
contacted bubbles in constricted channel have
been derived. Such analytical epuations provide
the determination of capillary pressure change

across the gas-liguid-gas interfaces during dispersed

Key words :

phase (foam) flow in porous media. Although
the exact results are highly implicit and would
require significant numerical calculations at each
interface, accurate approximations within a few
percent errors are possible under certain practical

conditions.

capillary pressure, foam flow, porous media
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1. Introduction

When a two-phase system moves through a
porous medium, the non-wetting phase tends to be
broken down into discontinuous units by various
snap-off and phase division processes (Ransohoff,
T.C. and Radke, C.J., 1988, Ransohoff, T.C,
Gauglitz, P.A. and Radke, C.J,, 1987; Mohanty,
KK, 1981; Roof, 1.G, 1970). If these fluid
phases are devoid of any film stabilizing surface
active agents, these bubble (or drop) generation
processes are countered by rapid reconnection
{coalescence) processes, and the non-wetting
phase effectively moves in a pseudo-continuous
This
continnity of the phases then allows the use of

manner through the porous medivm.

conventional methods for describing multiphase
displacement and flow, e.g., the use of fractional
flow theory coupled with relative permeability
determinations as a function of phase saturations.
We refer to such multiphase flows as non-
dispersed phase flows.

If a surfactant that significantly inhibits the
in situ coalescence processes is present, the non-
wetting phase will remain discontinuous and the
description of the displacement will depend upon
the resident texture (bubble size, bubble size
distribution) as well as the phase saturations. This
additional phase
significantly complicates the analysis of such

dependence on texture
flows, which we refer to here as dispersed phase
flows. No longer is thc analysis within the scope
of fractional flow theory and new approaches are
needed to satisfactorily describe the observed
behavior. Currently, this poses a significant new
change in multiphase flow phenomena in porous
media and in recent years has occupied the interest
of a nmumber of investigators (Kovscek, A.R.,
Patzek, T.W., and Radke, C.J., 1997; Cohen,

D., Patzek, T.W., and Radke, C.J., 1996;
Willis, M.S.,, 1995, Goode, P.A. and
Ramakrishnan, T.S., 1993; Gennes, P.G,
1992; Gauglitz, P.A. and Radke, C.J., 1990;
Rossen, W.R., 1990; Ransohoff, T.C. and
Radke, C.]., 1988; Ettinger, R.A. and Radke, C.J.,
1989; Prieditis J.C., 1988; Flumerfelt, R W. and
Prieditis, J.C., 1988; Hirasaki, G.J. and Lawson,
J1.B., 1985; Stover, R.L., Tobias, C.W., and
Denn, M.M., 1977; Holmm, LW., 1968, Bernard,
G.G., Holm, L.W. and Jacobs, W.L., 1965).

We present herc the equations for
calculating the position and curvature of a lamella
between contacted bubbles in constricted channel.
We first follow Prieditis (1988) and develop the
equations for two dimensional and three
dimensional channels with constant sloped walls.
The results are then extended to channels with
walls which bave axially varying slopes. Of
particular interest in the latter connection is the

channel with a sinusoidally varying radius.

2. Two Dimensional Diverging Plate

Consider the two-dimensional geometry of a
lamella in a channel formed by two diverging
plates as shown in Fig. 1. Zero contact angles are
assumed at the gas-liquid-wall contact points
(%, v} and (x,, y,} and at the apparent contact
point () between the bubbles and liquid in the
plateau border. The quantities R; and R, are the
radii of curvature at the gas-liquid interfaces
between the bubbles and the liquid in the plateau
border. The points (x], y]} and (x), y5) are the
center points of this radii and are located by the
intersections of passing through the points
(x{, y1}, C, and (x5, y3) which are lines
perpendicular to the pas-liquid interfaces.
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From the geometry of Fig. 1, it follows that

X =x +Rysina (D
M = yjtana ~ Ry cosa (2)
Xy = xp + Ry sina (3)
Y2 = yotang — R, cosa 4

Now L= Jiren Tl T - 2k

Fig.1 Geometry of the two dimensional
diverging pore.

From the geometry of Fig. 1, it follows that x; and
x, arerelated by

xy = x; +2/RR, cosex 5
and  m=tanf = y{/{x - x3) 6)

Also, the lamella radius "r" can be written as

r=——+R
Sin ﬁ (7)

= y{(]+l/m2}/2 +R,

Finally, we applicd Laplaces' capillary equation

across the gas-liquid interfaces and across the

lamella to obtain

20
AP:T:PC1—PC2 (8)

. 20 20
since Pry = -—— y Prog=— (9,10
1 ) C2 %, )
2

then r= i}iz_ (11)

Ry - Ry

To determine the pressure difference across
the lamella, AP, we first fix the values of «, x,
This
allows the determinations of xj, y{, x3, y», and
x, from Eqgs. (1)-(5). We then calculate x3, and r
from Eqs. (6)-(7) and update the value of R, using

and R, and then guess a value for R;.

a Newton-Raphson procedure. Once convergence
is obtained, the pressure difference across the
lamella is determined from Eq.(8). The result is
generaliy reported in dimensionless form, i.e.,

ARy =2/r" (12)
where  ARy)= _0% (13)
and ¥ =2/R, (14)

while the subscript (2) reminds us that the result is
for the two dimensional case. The quantity Ry is a

characteristic radius.

3. Three Dimensional Axisymmetrical Conical
Pore

The geometry for a cone-shaped pore is
shown in Fig. 2. The gas-liquid interfaces in the
plateau border region are not circular as in the
previous two dimensional case. There are instead
nodoidal surfaces.  Also, the liquid lamella
between bubbles is spherical in shape.

For this case, the dimensionless pressure

drop across the lamella is

L]

AR3) = 2:;20 =Py~ Poy

(15)
= Z/r*

where PGy = Poy/(20/R, ) (16)

and  Ply = Py /(20/Ry ) th)
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From simple geometry and Eq. (15), it follows that
RE: = sin B = 23111‘[3
AP

2sin 8 (18)

T I

For-Fe
In terms of the geometric variables R and 0,
Laplaces’ Equation for the gas-liquid interfaces in

the plateau border region can be written as

PE =l( dtsinﬁ + sm*G ]
2l drR

R

= d, d* [R*sinﬂ]

(19)

2R dR

S s
Lot TR RN

-
I ' .
LY
LT PR TN

Nl

Fig. 2 Geometry of the three dimensional
diverging pore.

Direct integration then gives the equations
defining the plateau border interfaces 1 and 2, i.e.,

(R,'2 -R'Z)Pgl +R'sin@ - R cosa=0 (20)
[RE’ —1%‘2)?52 +R"sinf —Rycosax =0 (21)

where we have used R* and 6 to denote R* and
@ variables on the “2” interface.

Similarly,
defining the shape of the liquid lamella, where o
in Eq. (19) is replaced by 20 in this case to
account for the 2 interfaces making up the liquid

we can oblain the equation

lamelia, as

R2P -RPE:, -(R - R )cosa =0 (22)

Applying Eq. (20) at 6 = 8 where R* = R, and
using Eq. (18), gives

R = cose + J cos’a + 2PEI !22-2 (Pg-l + Pc*'z)j
! 2P
(23)

Rearranging Eq. (19) gives

w * *
cosa +yJcos® o~ 4P52 [RI cosa - Ry 2PCJ
L
2Fcy

R; =
(24)
The axial distance Z;-Zf between the

intersection points of the interfaces in the conical

surface is given by

£ *
* * R _'R
22"21 = fanal
e e (25)
= JltanedR'+ ftanedR'
Re R¢
Using Eqs. (15) and (21),
o+rf2 .
R sin@
r8)= f 40
2R Fgy —sing
o 26)
o+ LL SN - "
+ I A‘R*Smﬁ Adé—Rz_Rl =0
T+ 2R PC2—sin6 tana

where R in the first integral is obtained from Eq.
(20) and R" in the second integral form Eq. (21).
Eq. (26) represents an implicit equation in
terms of f§ if Py, Pop and o arc fixed This
equation can be combined with Egs. (18), (20),
(21), (23), and (24) to determine [ using an
iterative Newton-Raphson procedure.
Convergence of this procedure to a constant

also gives R from Eq. (18), R, form Eq. (20),
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and R; from Eq. (21). The corresponding values
of AP(;) and r are obtained directly from the
specified values of P, and P, and Eq. (15).

4. Comparison of Two Dimensional and Three
Dimensional Cases

In each of the above calculations, three
guantities had to be specified before complete
shape calculations could be executed. In
comparing the two dimensional and three
dimensional results, we will compare AP(Z) and
APy) for specific values of &, Py, and Z{ (or x
in the two dimensional case). In particular, in Fig.
3, we show the results of such calculations. As
can be seen that AP(;) and Aﬂg) values are nearly
identical regardless of the value of Zl' = xf ) and
PEI. The results in Fig. 3 are for a fixed o,
however, calculations at different er's also showed

similar results.

10 13 w 13 a0 31 40
Py
Fig.3 Comparison of 2-D and 3-D
case studies.

The importance of these results is that we
can use simple two dimensional calculations to
predict three dimensional results. In particular, if
AR)) is determined, then

are, 7y P J= AR B ) @)

ARj) =%Aﬂ’5) (28)
In the two dimensional calculations, a
further simplifications is possible since it can be
shown (theoretically or numerically) that x3 in
Fig. 1 is identically zero (Prieditis 1988).
Under such conditions,
. oxy

- (29)
cCOosx

r

here, x; is the axial position of the intersection of
the extended lamella curve with the pore wall
From Eq. (12), the pressure difference is then

ARGy = 2c0saf 5 (30)
Hence, if Eq. (28) is used,
ARy =4 @31

cosa

5. Two Dimensional Sinusoidal Pore
The geometry of the channel is shown in
Fig. 4. The gap R between the two wall varies

according to

y=a-bcosdx (32)
with a=§(y(o)+ y(L) (33)
wd b =2(()-50) (34)

1

-

Fig. 4 Geometry of the two dimensional

sinusoidal pore.
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where A =n/L. For the diverging section shown
in Fig. 4, y(0) corresponds to Y., and y(L)
corresponds to Yy, ., for a converging section, this
correspondence is reversed.

The slope at any point (x;, y,-) on the channel
surface, tang;, can be obtained from

tang; = 2 = bAsin Ax; (35)
i x=x;
— tap~—] .
a; =tan” (pAsin Ax;) (36)

The coordinates for the center points (x{, y;) and

(5, %) are:
Ii =x+ Rl Sina1 (37
¥ =a-bcosix + Rjcosqy (38)
x5 =x + Rysina, (39)
Yo =a—bcosAx, + Rycosa, (40)
and A= I=H @1
Substituting Eq. (38) into Eq. (41) gives
R =R 42)
¥2

Also
=0 =P+ =) = (R + Ry 43)

If Egs. (37)-(40) and Eq. (42) are used in Eq. (43),
we can eliminate xj, ), y{, ¥, and R, and obtain

20, Ry, 2,8,b)=0 (44)

Further, if we fix xj,x,,LR(0) and R(L), this
equation reduces to

F(Ry)=0

A Newton-Raphson procedure is then used to
determine R,, with the other variables following

(45)

from the previous equations (x, from Eq. (39),
y; from Eq. (40), Ry and y; from Egs. (38) and

(42), x1 from Eq. (37) and r from Eq. (39)).
Once r is determined, the pressure

difference across the lamella is given by

¥ AP 2
of }’(0) r
where
x r
r =—= (47)
()

The point (x4, y4) and the slope tanay is
then obtained from the simultancous solution of

the equations:
tanc, = bAsin Ax, (48)
sinoy = % 49)
¥4 =a—bcos Axy (50)
Finally, to determine x3, we use
X478 _Singy (51)

r

The position (x,, y4) is the point where the
extended lamella curve intersects the wall. In
general, this curve is not perpendicular to the wall
at the point of intersection. If y is the angle of a
line which is perpendicular to the extended lamella
curve at (xy, y4), then

Y4 = rsiny (52)

X4 = X3 +rcosy (53)

Also, Y4 =a—bcos Axy (54)

and w =mlx; ) (55)

where m= yiz—“y}’ (56)
270

Solution of these equations gives x3,x4, y4,7 and

m.
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6. Approximate Solution

In general, ¥ will be different from .
However, if 7 is taken to be equal to ay, an
approximate solution is obtained. In particular, if
we know the position x,, an approximate value

of the radius r can be obtained from

r*l = r* = _)L4_
Y=a; sinex,
. (57
_a-brosAx
Sinay
The pressure difference is then given by
¥ 2
AP =—; (58)

In Table 1 we compare the valucs of AP
and AP”. The x4 value used in each case was the
same, i.e., that obtained from the exact solution.
We see from the results that only small errors are
involved in using Egs. (57) and (58). This is
particularly important if onc can estimate the
position in x; from a knowledge of the volume of
bubble "1" in the channel.

Table 1. Comparison of the exact and
approximation solutions for the two
dimensional sinusoidal pore,

* ] ]
x x3 AP

Exact | Approx. | %Error

0.1]101] 0.268 0.268 0.000
05) 07| 0877 0.879 0.228
1.0 1.2 | 0.867 0.869 0.231
1.0 | 2.0 | 0.740 0.756 2.162
L5 1.7 ]| 0.687 0.687 0.146
20125 0444 0.450 1.351
20|30 0.180 0.188 4,444
25| 27| 0.240 0.244 1.667
29 | 30| 0.037 0.038 2.703

Fixed values Y, =3.0,Yy, =1.0,L = 3.0

In previous sections, we showed that the
two dimensional and three dimensional results for
a constant sloped channel were nearly identical if
the AR,y was scaled to o/R; and ARj) was
scaled to 20/Ry. It |[R(L)-RO}YL is
small, a three dimensional
axisymmetric sinusoidal channel, similar results
would be expected between Aﬁ;) and AP(:_,) in the

sinusoidal case.

sufficiently for

Under this conditions,

ARGy = ARy = =4

sinoy
_a- bCOS()(.x4 )
sinoyy

(59)

Here, if Z4(=x4) can be determined from a
knowledge of the value of bubble "1" in the
channel, Eq. (59) provides a simple approximate
relation for determining AP(%)

7. Conclusion

The principal conclusions of this work are
to present the equations and the approximate
methodology for calculating the position and
curvature of a lamella between contacted bubbles
in the channel with a sinusoidally varying radius.
Such information is useful in determining the
capillary and threshold pressures of foam flow in

porous media.
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