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บทคัดย่อ

 สมการความร้อนคือสมการที่ใช้อธิบายการกระจายความร้อนบนปริภูมิหนึ่งๆ ณ เวลาใดๆ โดยทั่วไปค�าตอบของสมการความร้อน 

จะอยู่ในรูปปริพันธ์ของผลคูณระหว่างฟังก์ชันความร้อนเริ่มต้นและเคอร์เนลความร้อน ดังนั้นพฤติกรรมของเคอร์เนลความร้อนจึง 

มีผลกระทบโดยตรงต่อพฤติกรรมของค�าตอบของสมการความร้อน บทความนี้จะยกตัวอย่างความสัมพันธ์ข้างต้น ซึ่งก็คือความสัมพันธ์

ระหว่างพฤติกรรมแบบเกาส์ของเคอร์เนลความร้อนและอสมการฮาร์แนค รวมถึงผลกระทบที่พฤติกรรมทั้งสองมีต่อสมบัติทางเรขาคณิต 

ได้แก่สมบัติทวีคูณและอสมการปวงกาเรของปริภูมิน้ันด้วย โดยผู้เขียนหวังว่าบทความนี้จะเป็นความรู้เบี้องต้นให้กับผู้ที่สนใจท�าวิจัย 

ในสาขานี้ต่อไป

ค�าส�าคัญ : อสมการฮาร์แนค   การประมาณค่าเคอร์เนลความร้อน   สมบัติทวีคูณ   อสมการปวงกาเร

Abstract

 Heat equations are used to explain the distribution of heat over spaces and time. Typically, solutions of heat 

equations can be written as integrations of their initial heat profiles and heat kernels. Thus, heat kernel behavior 

directly influences the behavior of solutions of heat equations and vice versa. This article will review one such 

relation: the Gaussian behavior of heat kernel and the (parabolic) Harnack inequality. This article will also discuss 

how these two properties relate to the geometric properties such as doubling property and Poincare inequality of 

the underlying spaces. Hopefully, this will serve as an introduction to those interested in working in this field.

Keywords : Harnack inequality, heat kernel estimates, doubling property, Poincare inequality
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Dirichlet Forms
 To simplify the analysis, the author assumes 

that the topological space X is locally compact but 

non-compact, second countable and Hausdorff, the 

Borel measure ν on X always has full support, and the 

Dirichlet form (E,D(E)) on L2(X, ν) is regular, strongly 

local, and admits the carre du champ operator. 

Definition 1. A Dirichlet form is a pair (E,D(E)) where  

                                is a closed, positive symmetric, 

densely defined, bilinear form on L2(X, ν) with the 

following property: for any f ∈ D(E), the function 

                                         and

 The set                  equipped with the 

inner product                                   is a Hilbert space, 

called a Dirichlet space, and its norm associated to its 

inner product is referred to as the Dirichlet norm.

 The regularity assumption means the intersection 

of D(E) and Cc(X), the set of real-valued continuous 

functions with compact support on X, is dense in Cc(X) 
under the uniform metric. This is necessary. The domain 

of a Dirichlet form must contain enough continuous  

functions, otherwise it will not reflect analytic properties 

of the underlying spaces. See (Oshima et al, 2010) for 

further treatment of regularity of Dirichlet forms.

 A Dirichlet form (E,D(E)) is strongly local if  
                    for any                     with             

for some constant          . The fact is strong locality is 

equivalent to Leibnitz rule and chain rule (Sturm, 1994).  

Hence, strong locality informally implies that the Dirichlet 

form’s behavior is that of differential operators.

 Note that any regular Dirichlet form (E,D(E)) 
is uniquely associated to an energy measure2 Γ which 

might not be absolutely continuous with respected to 

the volume measure ν. If it happens that             is 

always absolutely continuous with respected to ν, then 

that Dirichlet form is said to admit the carre du champ  

operator                                 . Sufficient  

conditions for the existence of the care du champ 

operator is discussed in Bouleau and Hirsch’s book 

Introduction
 The class ical heat equation is g iven by 

                                , where the function              0   

             satisfying the above equation is called a 

solution of the classical heat equation. Typically, u(t,x)
is interpreted as the temperature at point             and 

at time t > 0 i.e. the solution u represents the evolution 

of temperature over space and time. It is well-known that 

solution u of the classical heat equation satisfies

provided that the initial heat profile 

satisfies some regularity assumptions. The function  

                                                    is called the heat 

kernel associated to the Laplacian  

 General heat equations are given by replacing  

the Laplacian with other heat operators. One question 

any researcher might ask is that whether or not the 

heat kernel associated to that heat operator exhibits 

the same behavior as that of the heat kernel associated 

to the Laplacian. Less than sixty years ago, Nash (Nash, 

1958), Moser (Moser, 1961, 1964, 1967), and Aronson 

(Aronson, 1967, 1968, 1971) independently worked on 

this problem which can be deduced that the result 

holds for uniformly elliptic operators on      i.e. for 

heat operators of the form                  such 

that                                          is smooth for all i,j = 1, ...,n  

and  there  exists  λ  ∈  (0,1)  for  which   

                                         for all

       Since then the result has been progressed 

in many directions. This article will focus on the results 

related to the perturbation of the heat equation using 

Dirichlet forms approach.
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Note that              so                   , the   -dual of     . 1 
Therefore,                                is a well-defined object. Denote 2 
                                                              and also denote 3 
          the set of all functions          such that for any relatively compact open 4 
subset     of    , there exists a function           satisfying      a.e. on    . 5 

In order to view a solution of heat equations as a function from   to     , any function 6 
        will be viewed as a function          . 7 

 8 
Definition 2. Let   be an open time interval and   be a heat operator associated to a strongly 9 
local regular Dirichlet form          on        . A function          is a (local) weak 10 
solution of the heat equation        if 11 
a)            , and 12 
b) for any open interval   relatively compact in   and any          ,  13 

                 
 

                    
 

    
 14 

Simple examples of weak solutions in the sense introduced above are functions        15 
      for          , where   is any bounded interval, and          . More interesting 16 
examples are given in (Aronson, 1968), see also (Gyrya  & Saloff-Coste, 2011). 17 

Note that fixing an open set   and replacing      with the closure of the set 18 
                                      in the above definition yields the definition of local 19 
solutions (in  ) of heat equations. 20 
 21 
Definition 3. An associated heat kernel of a strongly local regular Dirichlet form          on 22 
        is a nonnegative function               such that any nonnegative solution   23 
of the heat equation associated to          satisfies                             for all 24 
    and    . 25 
 26 

The author ends this section with the definition of the (uniform) parabolic Harnack 27 
inequality. 28 
 29 
Definition 4. A strongly local regular Dirichlet form          associated to a heat operator   on 30 
        satisfies (uniform) parabolic Harnack inequality if there exists a constant      such 31 
that for any        , and any non-negative weak solution   of the heat equation     32 
   on              , 33 
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           and both supremum and infimum are 34 
computed up to sets of measure zero. 35 
 36 

Informally, a heat operator satisfies parabolic Harnack inequality if its solutions, further 37 
away from the boundary, are roughly constant.  One consequence of uniform parabolic Harnack 38 
inequality is that such solutions always admit continuous representative so one may assume that 39 
they are continuous.  For further information about Harnack inequality including its variance and 40 
history, see (Kassman, 2007). 41 
 42 
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information about Harnack inequality including its variance 

and history, see (Kassman, 2007).

Laplacian
 A classic example of heat equations is the classical  

heat equation with the Laplacian                                on 

    as the heat operator and the Lebesgue measure 

as its underlying volume measure. Its associated Dirichlet 

form is defined by

with the domain                                                      , the 

L2-Sobolev space of order one. The Dirichlet norm is 

nothing but the Sobolev norm

and the intrinsic distance is nothing but the Euclidean 

distance on       .

 The  heat  kernel 

 associated to ∆ is defined by

which will be called, for the rest of this work, the 

classical heat kernel.

 Denote        the Gaussian kernel i.e. the density 

of the Gaussian (Normal) distribution with mean zero and  

variance         . Then                                              i.e.

           is a probability density of a random variable.  

Actually, p is the transition density of the Brownian 

motion on        .

 In general, any heat operator is a Markov operator 

of some Markov processes and the heat kernel is the 

transition density of the corresponded Markov Processes 

(Chen & Fukushima, 2012). Therefore, it is possible to 

study Markov processes via heat equations. However, 

that subject will not be discussed here.

 Simple examples of weak solutions in the sense 

introduced above are functions                     for 

                        , where I is any bounded interval, and  

                   . More interesting examples are given in 

(Aronson, 1968), see also (Gyrya  & Saloff-Coste, 2011).

 Note that fixing an open set V and replacing 

D(E)with the closure of the set                        has 

compact support in      in the above definition yields 

the definition of local solutions (in V) of heat equations.

Definition 3. An associated heat kernel of a strongly 

local regular Dirichlet form (E,D(E)) on L2(X, ν) is a 

nonnegative function                                      such 

that any nonnegative solution u of the heat equation 

associated to (E,D(E)) satisfies 

                           for all             and             .

 The author ends this section with the definition of 

the (uniform) parabolic Harnack inequality.

Definition 4. A strongly local regular Dirichlet form 

(E,D(E)) associated to a heat operator L on L2(X, ν) 
satisfies (uniform) parabolic Harnack inequality if there 

exists a constant H0 > 1 such that for any        
and any non-negative weak solution u of the heat 

equation                   on                             ,

where 

          and both supremum and infimum are 

computed up to sets of measure zero.

 Informally, a heat operator satisfies parabolic 

Harnack inequality if its solutions, further away from 

the boundary, are roughly constant. One consequence 

of uniform parabolic Harnack inequality is that such 

solutions always admit continuous representative so 

one may assume that they are continuous. For further 
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Laplacian 1 
A classic example of heat equations is the classical heat equation with the Laplacian 2 
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with the domain                     , the    Sobolev space of order one. The 5 
Dirichlet norm is nothing but the Sobolev norm 6 

       
  

         
 
  

     
           

and the intrinsic distance is nothing but the Euclidean distance on   . 7 
 The heat kernel                 associated to   is defined by 8 

          
          

       
 

   

which will be called, for the rest of this work, the classical heat kernel. 9 
 Denote     the Gaussian kernel i.e. the density of the Gaussian(Normal) distribution with 10 
mean zero and variance   .  Then                    i.e.          is a probability density of 11 
a random variable.  Actually,   is the transition density of the Brownian motion on   . 12 

In general, any heat operator is a Markov operator of some Markov processes and the 13 
heat kernel is the transition density of the corresponded Markov Processes (Chen & Fukushima, 14 
2012).  Therefore, it is possible to study Markov processes via heat equations.  However, that 15 
subject will not be discussed here. 16 

One possible question is that whether or not heat kernels associated to other heat 17 
operators behaves similarly to the Gaussian kernel. 18 

 19 
Gaussian Behavior 20 

In the previous section, the classical heat kernel depends on two objects, one is the 21 
intrinsic distance i.e. the Euclidean distance on   , and another is the dimension   of the 22 
underlying space      It is interesting to know whether this behavior happens for other heat 23 
kernels.  Consider a heat operator       where     is a fixed constant.  It is easy to see that 24 

  is a (weak) solution of the heat equation associated to   if and only if   solves   
        .  25 

Therefore, the heat kernel associated to   is           
      

 
 
  

      
   , which is again Gaussian.  26 

As a generalization of this property, one might instead ask whether a heat kernel has Gaussian 27 
upper and lower bound.   Nash (Nash, 1958), Moser (Moser, 1961, 1964, 1967), and Aronson 28 
(Aronson, 1967, 1968, 1971) concluded that this is true for uniformly elliptic operator.  Later on, 29 
Li and Yao(Li & Yao, 1986) extended this result to Laplacians on manifolds with nonnegative 30 
Ricci curvature.  However, Li and Yao also showed that the term    is no longer correct and 31 
should be replaced with the volume measure.  The following definition gives the current form of 32 
Gaussian behavior of heat kernel. 33 
 34 
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Here ν is the volume measure and ρ is the intrinsic 

distance.

 A heat kernel is said to satisfy Gaussian estimates 

if it has both Gaussian upper bound and Gaussian lower 

bound. A heat operator or a Dirichlet form is said to satisfy 

Gaussian estimates if its associated heat kernel exists 

and satisfies Gaussian estimates.

 For heat operators in Euclidean space      with 

the Lebesgue measure as their volume measure 

                                     for all                for some 

fixed constant c > 0. This reduced to the same type of 

estimates found in the work of Nash (Nash, 1958), Moser 

(Moser, 1961, 1964, 1967), and Aronson (Aronson, 1967, 

1968, 1971). As a generalization of Euclidean dimensions, 

one might be tempted to define the (local) dimension of  

the underlying space   as                 or 

any other terms of similar nature. However, this limit 

usually does not exist regardless of whether the heat 

kernel has Gaussian estimates. Even when the limit is 

replaced by limsup or liminf, it still possible that the 

limit as t converges to zero is not the same as the limit 

as t converges to infinity. In other words, there is no 

universal definition of dimension in general. Nevertheless, 

Gaussian estimates still imply a property related to the 

growth of the volume measure called doubling property 

(Sturm, 1996). 

Doubling Property
 Actually, doubling property is a property of the 

underlying spaces and not of the Dirichlet forms. It 

has been studied as a subject by itself. The book of 

Heinomen (Heinomen, 2001) is a good starting point.  

There are two closely related versions of doubling 

property, one is for the space to be doubling, and another 

 One possible question is that whether or not 

heat kernels associated to other heat operators behaves 

similarly to the Gaussian kernel.

Gaussian Behavior
 In the previous section, the classical heat kernel 

depends on two objects, one is the intrinsic distance 

i.e. the Euclidean distance on      , and another is the 

dimension n of the underlying space         . It is interesting 

to know whether this behavior happens for other heat 

kernels. Consider a heat operator             where         

is a fixed constant. It is easy to see that u is a (weak) 

solution of the heat equation associated to L if and 

only if u solves                    Therefore, the heat kernel  

associated to L is                                             , which  

is again Gaussian. As a generalization of this property, 

one might instead ask whether a heat kernel has 

Gaussian upper and lower bound. Nash (Nash, 1958), 

Moser (Moser, 1961, 1964, 1967), and Aronson (Aronson, 

1967, 1968, 1971) concluded that this is true for uniformly 

elliptic operator. Later on, Li and Yao(Li & Yao, 1986) 

extended this result to Laplacians on manifolds with 

nonnegative Ricci curvature. However, Li and Yao also  

showed that the term     is no longer correct and 

should be replaced with the volume measure. The 

following definition gives the current form of Gaussian 

behavior of heat kernel.

Definition 5. A heat kernel p is said to have Gaussian 

upper bound if there exist constants c1, c2 > 0 such that 

for all x, y in the underlying space and t > 0,

 A heat kernel p is said to have Gaussian lower 

bound if there exist constants c3, c4 > 0 such that for 

all x, y in the underlying space and t > 0,
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is for the volume measure of that space to be doubling.  

It turns out that the latter implies the former while the 

former implies the existence of a Borel measure which is 

doubling (Luukkainen & Saksman, 1998). Therefore, only 

doubling property of volume measures will be discussed 

here.

Definition 6. A non-zero Borel measure ν on a metric 

space        is doubling if there exists a constant 

               such  that  for  any               and 

 Grigor’yan and Saloff-Coste (Grigor’yan & Saloff-

Coste, 2005) extended the concept of doubling property 

to that of remote and S-anchored balls. They showed 

that doubling property of remote and S-anchored balls 

together with another property called volume comparison 

condition imply doubling property for all balls provided 

that the set            is fully accessible. Using this fact 

when S is singleton, Grigor’yan and Saloff-Coste proved 

doubling property of weighted measures with finite 

unbounded weight functions. Moshimi and Tesei 

(Moshimi & Tesei, 2007) also used this fact to show 

doubling property of weighted Lebesgue measures with 

unique-singularity weight functions. To be precise, they 

proved doubling property for measures               where 

λ is a positive number less than the dimension of the 

underlying Euclidean space. Later, the fully accessible 

assumption was weaken to that of k-skew condition and 

the unique-singularity assumption was removed yielding 

the following result. 3 

Theorem 1. (Tasena, 2011) Let ν be a doubling measure 

on a metric space 

is closed and null, and                              . Assume 

the following conditions hold.

a) The set S satisfies k-skew condition i.e. for any 

and             there exists             such that

b) The function a is remotely constant i.e. there exists a 

constant              such that for any

 

Then µ is doubling if and only if there exists a constant  

           such that for any             and      

 Examples of k-skew subsets of Euclidean spaces 

include proper subspaces, spheres, lattices with positive 

codimension, cylinders, etc. Examples of remotely 

constant function include positive rational functions, 

polynomial growth and subpolynomial growth functions 

such as functions with logarithmic growth rates. For further 

details, examples, as well as methods to check whether a 

weighted measure of this type satisfies doubling property, 

see (Tasena, 2011).

 One interesting question is to classify weight 

functions for which their corresponding weighted 

measures satisfy doubling property.

Open Problem. Let ν be a doubling measure on a 

metric space        . Find necessary and sufficient 

conditions of                      for which the weighted  

measure                     is doubling.

Poincare Inequality
 The last concepts discussed in this article is the 

(uniform) Poincare inequality which states how the 

L2-norm is controlled by the Dirichlet forms. Other 

inequalities of this type include Sobolev inequality, 

Nash inequality, etc. Recent survey article by Saloff- 

Coste (Saloff-Coste, 2011) discussed these concepts as 

well as their relationships.

 Unlike doubling property, the Poincare inequality 

is a property of Dirichlet forms.

Definition 7. Let (E,D(E)) be a strongly local regular 

Dirichlet form on L2(X, ν) with associated energy 

measure Γ . Then (E,D(E)) is said to satisfy weak 

(uniform) Poincare inequality if for some constant 

           and                 
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Tesei, 2007) also used this fact to show doubling property of weighted Lebesgue measures with 3 
unique-singularity weight functions.  To be precise, they proved doubling property for measures 4 
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Later, the fully accessible assumption was weaken to that of  -skew condition and the unique-6 
singularity assumption was removed yielding the following result.3 7 
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as functions with logarithmic growth rates.  For further details, examples, as well as methods to 19 
check whether a weighted measure of this type satisfies doubling property, see (Tasena, 2011). 20 

One interesting question is to classify weight functions for which their corresponding 21 
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If k = 1, then (E,D(E)) is said to satisfy (uniform) 

Poincare inequality.

 Under doubling property, weak Poincare 

inequality and Poincare inequality are equivalent (Saloff-

Coste, 2002).

 Grigor’yan and Saloff-Coste (Grigor’yan & Saloff-

Coste, 2005) extended Poincare inequality to that of 

remote and S-anchored balls, where S ⊂ X is a fully 

accessible set. They used this fact to prove Poincare 

inequality on weighted Dirichlet spaces when S is a 

singleton and the geodesic space X satisfies a mild 

additional assumption called relatively connected 

annuli. Their weight functions include strictly positive 

unbounded real-valued functions with no singularity. 

Later, Moshimi and Tesei(Moshimi & Tesei, 2007) extended 

Grigor’yan and Saloff-Costes’ work to include weight 

functions                               where           

Nevertheless, the same technique can be applied to 

other weight functions with unique singularity.

 In 2011, Tasena (Tasena, 2011) extended these 

results to include weight functions with multiple 

singularities. He proved Poincare inequality under the 

assumptions that the weight functions are of the form  

            , where S is the singularity set and a is a  

nonincreasing remotely constant function. The singularity 

set S must also satisfy an additional assumption called  

k-accessibility.4 This is a stronger version of k-skew 

condition mentioned previously.
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is said to be k-accessible if it satisfies k’-skew condition 
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Sturm’s Result
 Sturm (Sturm, 1994, 1995b, 1996) showed in a 

series of articles that Gaussian estimates, parabolic 
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property are closely related.
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c). Since solutions of heat equations are integrals of the 
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influence the behavior of solutions of heat equations. On 

the contrary, heat kernels can be viewed as solutions of 

heat equations with Dirac measures as initial heat profiles, 

so parabolic Harnack inequality will force the heat kernels 

to satisfy Gaussian estimates. The Poincare inequality and 
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the doubling property, on the other hand, have almost 

nothing to do with heat equations. Yet these properties 

directly influence both heat kernels and solutions of 

heat equations. As an example, Tasena’s result can be 

translated as follows.

Theorem 4. Let (E,D(E)) be a strongly local regular 

Dirichlet form on L2(X, ν) with associated energy 

measure Γ , S ⊂ X is a ρ-accessible null set, 

                                  and                     

 If (E,D(E)) satisfies parabolic Harnack inequality, 

and a is a nonincreasing remotely constant function, 

then the weighted Dirichlet space (Eh,D(Eh)) satisfies 

parabolic Harnack inequality if and only if there 

exists a constant             such that for any            and

 

Conclusion
 In this article, the author introduces heat equations 

on general metric spaces using Dirichlet form approach.  

This is a generalization of an approach using Sobolev 

spaces and weakly differentiable functions. The author 

also discusses when heat kernels will have a nice behavior 

similar to the classical heat kernel. This is of course by no 

means a complete list of references. The author hopes 

that this will, however, provide an introduction to this 

field.

 There are several ways to perturbed Dirichlet 

forms. Here the author introduces weighted Dirichlet 

spaces. The original work of Nash (Nash, 1958), Moser 

(Moser, 1961, 1964, 1967), and Aronson (Aronson, 1967, 

1968, 1971) can also be considered results in this category. 

Over the years, many improvements have been made,  

many assumptions have been weaken. Yet, many 

questions remain unanswered. For examples, no one 

knows sufficient and necessary conditions for weighted 

measures to be doubling, or for weighted Dirichlet spaces 

to satisfy Poincare inequality. Even when the singularity 

set is k-accessible, no one knows the necessary and 

sufficient conditions of the weight functions for which 

the weighted Dirichlet spaces satisfy the parabolic 

Harnack inequality. Even whether k-accessibility is the 

right condition to assume on singularity sets is unknown. 

All these require further investigation into the subject 

so the author strongly believes this field will remain 

fruitful in years to come.
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