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Abstract
In this study, an economic order quantity (EOQ) model is extended to the case of imperfect items in a
product lot. A 100% inspection process of the lot is conducted. An inspection error can occur despite a 100%
inspection. From which, the misclassification is occurred that consists of two cases: (i) classifying non-defective
items as defective, (i) classifying defective items as non-defective. Moreover, for classifying defective items as
defective, these defective items are sent to repair and will be returned to inventory when items in inventory are
empty. This study is to determine the optimal policy with optimal order size and maximum expected total profit per

unit of time. A numerical example and sensitivity analysis are exemplified.
Keywords : EOQ model, imperfect item, inspection error, misclassification, repair
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Introduction

One assumption of classical economic order quantity (EOQ) models is that the ordered items are perfect.
However, the ordered items may be defective due to deficient planned maintenance or weak production control.
Many researchers have developed different economic order quantity models with imperfect items. Salameh and
Jaber (2000) developed an EOQ model when items were not of a perfect quality. They assumed a 100% inspection
process in which the defective quality items were withdrawn from inventory and sold as a single batch. This work
has served as a fundamental basis for similar works of many other researchers in the field. Papachristos and
Konstantaras (2006) proposed an EOQ model based on the work of Salameh and Jaber (2000). This model
discussed about shortage avoidance when the defective items were withdrawn from inventory after the inspection
process. Eroglu and Ozdemir (2007) developed an EOQ model with imperfect items and shortages backordered
under 100% of each lot were screened. Wee et al. (2007) extended the work of Salameh and Jaber (2000) and
assumed that shortage was allowed. Maddah and Jaber (2008) revisited the model of Salameh and Jaber (2000)
to adjust a fault in the model of Salameh and Jaber. Jaber et al. (2008) extended the EOQ model of Salameh and
Jaber (2000) by assuming the percentage of defective per lot reduced in agreement with the learning curve. Hsu
and Yu (2009) investigated an EOQ model with imperfectitems under a one-time-only sale when the imperfect items
were screened out and sold as a single batch at the end of the 100% inspection process. Chang and Ho (2010)
developed an EOQ model based on the work by Wee et al. (2007). This model applied the well-known renewal
theorem to obtain a closed-form optimum solution. Lin (2010) developed a new inventory model for imperfect quality
and quantity discounts where the buyer exerted power over its supplier. Lin assumed that the defective items were
screened out by 100% inspection and sold as a single batch at the end of the cycle and also assumed that the
order quantity was manufactured at on setup. Khan et al. (2010) extended a model of Salameh and Jaber (2000)
with three different scenarios of learning inspection. This model considered situations of lost sales and backorders.
Konstantaras et al. (2012) examined an EOQ model with imperfect item shortage under learning inspection. This
model was developed for infinite and finite planning horizons. Liu and Zheng (2012) proposed an EOQ model with
imperfect items, shortage under inspection errors, where the fraction of defective was assumed to be a fuzzy
number. Hsu and Hsu (2013) developed an EOQ model with imperfect quality items, inspection errors, shortage
backordering and sale returns. They also assumed that when a shortage was allowed, all customers were willing to
wait for the next delivery. Jaber et al. (2014) extended the EOQ model of Salameh and Jaber (2000) and presented
two models. In the first model, they assumed that defective items were sent to repair at the repair shop; whereas,
for the second model, defective items were assumed to be sold as a single bath and replaced by emergency order
quality. Paul et al. (2014) proposed an EOQ model for multiple items, where a certain percentage of defection for

some items was given. They considered two cases of the ordering policy; with and without a price discount.
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In this study, the EOQ model of Jaber and ef al. (2014) is extended with inspection error. The inspection
process is also imperfect due to misclassification in which the non-defective items will be classified as defective
and defective items will be classified as non-defective. Also, the classified defective items are again screened and
classified. The non-defective items are returned to inventory while the defective items are repaired and will be
returned to inventory when the inventory is empty. The rest of the paper is organized as follows. Section 2 describes
the inventory model and produces an optimal policy. Section 3 presents a numerical example and sensitivity

analysis. Section 4 presents a conclusion of our study.

Inventory model

In every cycle with a length time 1 , a lot size y is delivered with a constant demand rate b . We assume
that the lot size contains defective items ,y where , is a fraction of defective items. A 100% inspection process
is conducted at a rate x > D and defective items , y will be withdrawn from inventory at the end of inspection
time period t, . The inspection error can occur despite a 100% inspection. Thus, the misclassification consists of
two cases: (i) classifying non-defective items as defective with probability m, , these items (s ) will be returned to
inventory at the end of time period t, after they have been screened before repairing, (i) classifying defective items
as non-defective with probability m, , these items will be sent to a customer. We also assume that the customer
would not detect and return them to inventory. Moreover, the defective items (s, ), are sent to repair and they will
be returned to inventory when items in inventory are empty at the end of time period t, . The behavior of inventory

levels is illustrated in Figure 1.

Inventory Level

Figure 1 Inventory levels with inspection errors and repair option for defective items.
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Notations
y order size
D demand rate
ye fraction of defective items
X inspection rate
R repair rate
t, time to screen a lot size y
t, time to screen a defective lot size py
t, time to repair defective items
t, total transport time of defective items to repair and return to inventory
T cycle length time
K ordering cost
S repair setup cost
c, unit cost
h holding cost per unit of non-defective items
h, holding cost per unit of repaired items
h' holding cost per unit of repair facility
A transportation fixed cost
C, unit material and labor cost
C, unit transportation cost
c, unit inspection cost
c, accepting a defective item cost
c, rejecting a non-defective item cost
S unit selling price
m markup percentage
m, probability of classifying non-defective items as defective
m, probability of classifying defective items as non-defective

f(p) probability density function of p

f(m,) probability density function of m,

f(m,) probability density function of m,

E[.] the expectation of a random variable

B the number of non-defective items that are classified defective

B the number of defective items that are returned after repaire
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Consider a misclassification, a number of items are classified according to the misclassification from the
screening of items. In such inspection process, there are four cases. Case (i) Non-defective items are classified as
non-defective, ya- p)a-m,); Case (ii) Non-defective items are classified as defective, ya- p)m ; Case (iii)

Defective items are classified as non-defective, y,m,; Case (iv) Defective items are classified as defective,

y B
yp(l-m,) where B,=y(@d-p)m,; B,=yp(l-m,): t,=— t2=—y't3=—2+t1' 7z, =y-Dt,
X X R

z,=y(l-p)-ypm,-Dt, z,=y(1-p)—ypm,-D (t, +1,) and 2, =yp(l-m,)-D(t, +t,+t,):
To avoid shortage when the defective items will be withdrawn from the inventory at the end of the inspection
time period, we assume that the numbers of non-defective items are equal and greater than demand rate of

customers. Thus,

y-y@-p)m -yp(l-m,)>DT
y-(ym, -ypm)-(yp-ypm,)2DT
y-ym +ypm -yp+ypm,2DT
y(1-m)-yp(1-m)+ypm, > DT
y(1-m)(1-p)+ypm,2DT -

Without loss of generality, the cycle length time is given as

poymm)A-p)rypem, ()
D

Consider the different costs in this inventory system, first of all, the order cost (O C ) is given as

OC =K +c,y- (2)

The inspection cost (1c ) per cycle is a summation of the inspection cost of a lot size per units, inspection

cost of defective items per units and cost of misclassification, it is given as

IC=cy+cyp+c (l-p)ym +c pym, - (3)

The repairing cost (rc ) is given as

RC =(L+m)(S+2A+yp(l-m,)(c, +2c +ht))- (4)

IATIMENANARTYIN TN 23 (RUTUT 1) WNTIAN — BB WA, 2561 %



UNAINNIRE

The holding cost (HC ) is given as

+ + +

Hc=hjy2p(17m2) y(a-p) (1-ml) yi(p-pt)m, yz(l—p)szlmRJM. (5)
[ X 2D D D J L 2D J

So, the total cost (T ¢ ) per cycle is given by

TC =0C +IC+RC+HC

=Kseyscy+cyp+c (L=plym +c,pym, +(1+m)(S+2A+yp(l-m,)(c, +2¢, +ht,))

jyzp(lfmzhVz(lfp)z(l*mfh3’2(/3*/’2)’“z+yz(l*p)szl+h jyzpz(l—mz)z , (6)
| X 2D D D J R[ 2D J

+h

The total revenue (TR ) per cycle is the sum of total sale of non-defective items and total sale of repaired

items,

TR=s(y(1-p)(1-m)+ypm,)+sy(l-p)m +syp(1-m,). (7)

The total profit (TP ) per cycle is a difference between the total revenue (TR ) per cycle and the total cost

(Tc ) percycle. Itis given as
TP =TR-TC
= s(y(l—p)(l— m,)+ ypm2)+ sy(l-p)m +syp(l-m,)-K-cy-cy-cyp

-c,(I-p)ym —c pym, - (1+ m)(S +2A+yp(L-m,)(c, +2¢c, + h'ts))

| X ! 2D ! D " D J R[ 2D J

I e WA o LS o B AT N

=s(y@-p)@-m)+ypm,)+sy(l-p)m +syp(l-m,)-K-cy-cy-cyp

-c,(L-p)ym —c,pym, - (1+m)(S+2A)-(L+m)(yp(L-m,)(c, +2¢c, +h't.))

(yp 1—2m+m \

| J

,hjyzp(l— ), 2(1 m) v (p-p")m, yz(l—p)szl—hnj—yzpz(lfmZ)z (8)

where [ _ Y (=m)
3 R T

Since o, m and m, are the random variables with probability density function f(p), f(m) and

f(m,), respectively, the expected total profit per cycle is given as
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E(TP)=s(y(1-E(p))(1-E(m))+YE(p)E(m,)) +sy(1-E(p))E(m,)+syE(p)(1-E(m,))
-K-cy-c,y-cyE(p)-c, yA-E(p)E(m,)-c yE(p)E(m,)-(1+m)(S +2A)

~(1+m)(VE (p)(1-E (m,))(c, +2¢, + ', )) (“m)[yzE(Pz)(le(mg)+ E(m]))h")

R
LrEeIaEe)) vy (1-28(p)+E (7)) (1-E(m))
[ X 2D
y (E(p)-E(p))E(m) y (1-2E(p)+ E(pz))E(mf)]F
D D J
_hk4(yzE(pz)(1—2E(m2)+E(m:))]}. )
L 2D J

From Eq. (1), the expected cycle length time is given as

y(1-e(m ) (-e(p))+ yE(p)E(mz)_

D

E(T) =
when p and m, are independent of each other, and also, p and m, are independent of each other.

Using the renewal reward theorem (Maddah and Jaber, 2008), the expected total profit per unit of time

can be written as

E(T)
D[s(1-E(p))E(m)+sE(p)(1-E(m,))]
(1-e(m))(1-E(p))+E(p)E(M,)

D [ K
—+c,+¢c +CE(p)+c (1-E(p))E(m)

(1-E(m))(L-E(p))+E(p)E(m )|y

(1+m)(s+2A)
+C E(p)E(m, )+ ——————+(1+m)(E(p)(L- E(m,))(c, +2c +h't))
y

+(1+m)‘/yE(p )(1—2E(mz)+E(mz))h'\lJrhy{E(p)(lE(mz))

\ R )
(1-2e(p)+E(p ))(1-E(m))) (E(p)-E(p"))E(m,)

+ +
2D D

(1-2E(p)+E(p"))E(m])] fE(pz)(1—2E(mz)+E(mj))p|

+ - b +h_yd .
b J L 2D J ]

=sD +

X

(11)

The optimal value y* can be obtained by minimizing E (TPU ) of Eq. (11). Setting the first derivative of

E(TPU ) with respectto y equal to zero and solving yields the solution
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2D (K +(1+m)(S +2A))

JZDE(p)(l—E(mZ)) , 21
+F (1-E(m}))+2F, + 2FE(m )} +2(1+m)| h'D ——"—
l ' | | J Lor )

where F =1-2E(p)+E(p ), F,=(E(p)-E(p" ))E(m,)and F, =1-2E(m )+ E(m,).

(
\
|
y =
\
| h
L

Note that when there is no misclassification (m = m_=0), the optimal order size reduces to the EOQ of Jaber et
al. (2014) formula.

Taking the second derivative of E (TPU ) with respectto y , we have

d’ D {K+(1+m)(s+2A)}

—E(TPU) =~

dy (1-B(m))(1-E(p))+E(p)E(m,)

3

y

2

d
Since b >0,0<E(p)<1,0<E(m)<1and0<E(m,)<1 forevery y>0,then —E(TPU)<0
dy

which implies that there exists a unique value of y that maximizes Eq.(11).

Numerical example and sensitivity analysis

In this section, the values of the parameter are adopted from Khan et al. (2011) and Jaber et al. (2014).

These values are shown as follows.

D 50,000 unit/year
X 175,200 unit/year
R 50,000 unit/year
s $50/unit

K $100

s $100

c, $25/unit

h $5/unit

h, $6/unit

h' $4/unit

c, $0.5/unit

A $200

c $2/unit
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c, $5/unit

c, $500/unit
c, $100/unit
t 2/200 year
m 0.2

The fraction of defective items ( » ), the probability of classifying non-defective items as defective (m ) and
the probability of classifying defective items as non-defective (m ) has a uniform distribution in (0,6 ), (0, g ) and

(0,4 ), respectively where the upper bound of , , m and m are ¢ = g =2 =0.05. The probability density

function of , , m and m_ are given as

20, 0< p<0.05
f(p) -

0, otherwise

20, 0<m, <0.05
f(m,) -
1

0, otherwise

20, 0<m,6<0.05
f(m,) =

0, otherwise

Then, we have

0.05

E(p)= Ipf(p)dp:0.0ZS

0

E(m,)= [ mf(m,)dm, =0.025

0.05

E(m,)= I m, f(m, )dm, =0.025

0.05

E(pz): J.pr(p)dPZO.OOOSS

E (mf) = J' m f(m )dm = 0.00083

E(m:): I m;f (m,)dm_ =0.00083.

0

We substitute the above values of the parameter into Eq. (10), Eq. (12) and Eq. (11), the optimum solution
is T = 0.0723 years, y - 3,800.61 units and E(TPU ) = $1,038,250.83/year, respectively. Also, Fig. 2 shows that

the expected total profit per unit of time is concave in order size y and the optimal order size y  which maximizes

the expected total profit per unit of time.
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1,040,000

1,035,000

1,030,000

E(TPU)

1,025,000

1,020,000

1,015,000
0 2,000 4,000 6,000 8,000 10,000 12,000

y

Figure 2 Expected total profit per unit of time and optimal the order size

For sensitivity analysis, we consider behavior of the expected total profit per unit of time by considering in
cases of (i) ¢ =0.01,0.02,0.03, 0.04, 0.05 (ii) p =0.01,0.02, 0.03, 0.04, 0.05 and (i) 2 =0.01,0.02,0.03, 0.04,

0.05 which are shown in Tables 1 — 3, respectively.

Table 1 E(TPU) when , is uniformly distributed in (0,6 ),

where p =0.05and 2 =0.05

0 y E(TPU)
0.01 3,752.96 1,065,839.59
0.02 3,765.45 1,059,144.95
0.03 3,777.56 1,052,319.17
0.04 3,789.29 1,045,355.52
0.05 3,800.61 1,038,250.83

Table 1 shows that the upper bound of p isincreasingatfixed p =0.05and 2 = 0.05, the optimal order
size is increasing and the expected total profit per unit of time is decreasing. Because the non-defective items are
used to fulfill the demand of customer when the fraction of the defective items in the orderlot is increasing, the order
size will be large. However, the expected total profit per unit of time is decreasing, because there occurs an

additional cost of repairing when the order size has many defective items in the lot.

|
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Table 2 E(TPU) when m_ is uniformly distributed in (0, 5 ),

where ¢ =0.05and 2 =0.05

B vy E(TPU)
0.01 3,802.10 1,148,858.42
0.02 3,801.91 1,122,051.61
0.03 3,801.60 1,094,693.00
0.04 3,801.17 1,066,765.38
0.05 3,800.61 1,038,250.83

Table 3 (TPu) when m_ is uniformly distributed in (0, 4 ),

where ¢ =0.05and g =0.05

1 y E(TPU)
0.01 3,801.74 1,049,946.09
0.02 3,801.46 1,047,017.45
0.03 3,801.18 1,044,092.02
0.04 3,800.89 1,041,169.82
0.05 3,800.61 1,038,250.83

Table 2 shows the effect of probability of classifying non-defective items as defective at fixed ¢ = 0.05
and 4 = 0.05, when the upper limit distribution is increasing, and the optimum order size and expected total profit
per unit of time are decreasing. This effect is not significant because when the non-defective items classified as
defective are be returned to inventory, it depends on the optimum order size. However, the expected total profit per
unit of time is decreasing because of the cost of rejecting the non-defective items.

Table 3 shows that the effect of probability of classifying defective items as non-defective at fixed
o =0.05and g = 0.05 has a similar effect as the probability of classifying non-defective items as defective. When
the upper limit probability of classifying defective items as non-defective is increasing, the optimum order size and

the expected total profit per unit of time are decreasing.

Conclusion
In this paper, we develop an economic order quantity (EOQ) model with repairing under imperfect items

and 100% inspection process. An inspection error can occur despite a 100% inspection, so, the misclassification
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would consist of two cases that are (i) classifying non-defective items as defective and (i) classifying defective
items as non-defective. For classifying defective items as defective, they are sent to repair and will be returned to
inventory when items in inventory are empty. The expected total profit per unit of time is derived. We have found
that the expected total profit per unit of time remains concave with respect to the order size. Moreover, we have
obtained the optimal order size and time for replenishment.

Sensitivity analysis shows that the expected total profit per unit of time is decreasingin o , m_and m .

Further research can be conducted to consider stochastic demand.
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