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Abstract
In this paper, we propose a new iterative method for finding common solutions of mixed equilibrium
problems and common fixed points of uniformly Bregman totally quasi-asymptotically nonexpansive multi-valued
mappings in reflexive Banach spaces and prove the strong convergence theorems under some suitable control

conditions.
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Introduction

Let R be the set of all real numbers, E be a real reflexive Banach space with the dual E "and C bea
nonempty closed convex subset of E . Let G :C xC — R be a bifunction and ¢ : C — R be a real-valued
function. In 1994, Blum and Oettli (Blum & Oettli, 1994) firstly studied the equilibrium problem:

(EP) finding x € C suchthat G(x,y)>=0 forall ye C .

In 2008, the equilibrium problem was generalized by Ceng and Yao (Ceng & Yao, 2008) to the mixed
equilibrium problem:

(MEP) finding x e C suchthat G (x,y)+ @(y)—¢@(x)>0 forall ye C .

The mixed equilibrium problems include fixed point problems, optimization problems, variational inequality
problems, Nash equilibrium problems and the equilibrium problems.

It turns out that the fixed point theory of nonexpansive mappings can be applied to solving solutions of
certain evolution equations and solving convex feasibility, variational inequality and equilibrium problems. There
are, in fact, many papers that deal with methods for finding fixed points of nonexpansive and quasi-nonexpansive
mappings in Hilbert, uniformly convex and uniformly smooth Banach spaces.

In 1990, Kirk and Massa (Kirk & Massa, 1990) generalized the fixed point theorems for single-valued
nonexpansive mappings to multi-valued nonexpansive mappings and proved the existence of fixed points in
Banach spaces. Thereafter, many researchers generalized multi-valued nonexpansive mappings and obtained
fixed point theorems under some suitable control conditions.

Let N(C) and CB(C) denote the families of nonempty subsets and nonempty closed bounded

subsets of C , respectively. The Hausdorff metric on CB (C) is defined by

H (A,B) = max{supd(x,B), supd(y,A)},

xe A yeB
forall A,B € CB(C) where d(x,B)=inf{ll x—yll,ye B} .

In 1967, Bregman (Bregman, 1967) discovered a technique using the Bregman distance function
D, (-,-) indesigning and analyzing optimization and feasibility algorithms. Bregman's technique has been applied
in various ways.

When we try to extend the results to general Banach spaces we encounter some difficulties and there are
several ways to overcome these difficulties. One of them is to use the Bregman distances instead of the norm,
Bregman (quasi-) nonexpansive mappings instead of the (quasi-) nonexpansive mappings and the Bregman
projections instead of the metric projections.

In 2013, Li et al. (Li et al., 2013) introduced the concept of Bregman strongly nonexpansive multi-valued
mappings and obtained strong convergence theorems for the modify Halpern's iterations. Moreover, the application

for solving equilibrium problems in the framework of reflexive Banach spaces is presented.
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In 2014, Li and Liu (Li & Liu, 2014) introduced the concept of Bregman totally quasi-asymptotically
nonexpansive multi-valued mappings and proved strong convergence theorems for the hybrid Halpern's iterations
for a countable family of Bregman totally quasi-asymptotically nonexpansive multi-valued mappings.

Moreover, they (Li & Liu, 2014) applied their main results to solve classical equilibrium problems in the framework
of reflexive Banach spaces.

In this paper, we propose a new iterative method for finding common solutions of mixed equilibrium
problems and common fixed points of uniformly Bregman totally quasi-asymptotically nonexpansive multi-valued
mappings in the framework of reflexive Banach spaces and prove the strong convergence theorems under some

suitable control conditions.

Preliminaries

We begin by recalling some basic definitions and lemmas which will be used in our proofs.

Let E be a real reflexive Banach space, E~ be the dual space of E and f :E — (-o,+»] be a
proper lower semi-continuous and convex function. We denote by domf the domain of f , that is, the set
{xeE:f(x)<+w}.

Let x e int(domf ) . The subdifferential of f at x is the convex set defined by

6f(x):{x*e E i f(X)+(x,y—x)< f(y),Vye E} .
Let f :E — (—w,+0] be the Fenchel conjugate of f defined by
f*(x*) = sup{(x*, xy—f(x):xe E},VX* cE .
We know that the Young-Fenchel inequality holds, that is,
(xx,x> < f(x)+ f*(x*), Vxe E,x € E .
Forany x e int(domf) and y e E , we define the right-hand derivative of f at x the direction y by

£20x, y) = lim f(x+ty)- f(X)_

t>0" t

In this case, f°(x,y) coincides with Vv f (x) , the value of the gradient Vf of f at x.
Definition 1 Let f : E — (—o,+w]. The function f is called to be:

. . oo Bx+ty) - f(x)
(1) Gateaux differentiable at x if lim exists forany vy ;
t->0" t

(2) Gateaux differentiable if it is Gateaux differentiable for any x e int(domf ) ;
(3) Frechet differentiable at x if the above limit is attained uniformly inll yll =1;
(4) uniformly Frechet differentiable on a subset C of E if the above limit is attained uniformly for all x € C

andll yll =1.
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Lemma 2 (Reich & Sabach, 2010) Let f : E — (—o0,+w] be uniformly Frechet differentiable and bounded on
bounded subsets of E . Then f is uniformly continuous on bounded subsets of E and Vf is uniformly
continuous on bounded subsets of E from the strong topology of E to the strong topology of E ™.
Definition 3 A function f :E — (-o,+] is said to be a Legendre function if the following conditions are
satisfied:

(L1) The interior of the domain of f , int(domf)is nonempty, f is Gateaux differentiable on int(domf)
and domVf =int(domf);

(L2) The interior of the domain of f int(domf*) is nonempty, f" is Gateaux differentiable on
int(domf ) and domVf =int(domf ).
Remark 4 If E is a real reflexive Banach space and f is the Legendre function, then the following conditions
hold:

(a) f isthe Legendre function if and only if f is the Legendre function;

(b) (of) " =of"

() Vi =(vf ) ranvf =domVf =int(domf ),ranvf =domVf =int(domf);

(d) the function f and f  are strictly convex on the interior of respective domains.

Example 5 If E is a smooth and strictly convex Banach space and f : E — (-, +o] is a function defined by

1
f(x)=— xI * (1< p<+w),then f is a Legendre function. Moreover, the gradient Vf of f coincides

with the generalized duality mapping of E , i.e.,, Vf =] , < p<+mo). In particular, Vf = 1, the identity
mapping in Hilbert spaces.
From now on, we assume that the function f is Legendre.
Definition 6 (Censor & Lent, 1981) Let f : E — (-, +o] be a convex and Gateaux differentiable function. The
function D, :domf xint(domf) — [0, +) defined by
D, (y.x):=f(y)- F(x)-(VFE(x),y-x)
is called to be the Bregman distance with respectto f .
It should be noted that the Bregman distance is not a distance in the usual sense of the term. In general,
D, (-,-) is not symmetric and does not satisfy the triangle inequality. But by the definition, we know it has the
following important properties:
(1) (the two point identity) forany x,y € int(domf),
D,(x,y)+ D, (y,x)=(VI(x)=VTI(y),x-vy),;
(2) (the three point identity) forany x e domf and y,z € int(domf),
D,(x,¥y)+ D, (y,2) =D (x,2) =(VI(z2)-VI(y).,x-Yy);

(3) (the four point identity) forany y,w € domf and x,z e int(domf),
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Df(y,x)— Df(y,z)— Df(w,x)+ Df(w,z):(Vf(z)—Vf(x),y—w).
Definition 7 (Bregman, 1967) Let f : E — (-o,+o] be a convex and Gateaux differentiable function. The
Bregman projection of x in int(domf) onto the nonempty closed convex set C = domf is the necessarily
unique vector projcf (x) e C satisfying the following:
D, (proj. (x),x) =inf{D,(y,x):yeC}.
Definition 8 (Butnariu & lusem, 2000) Let f : E — (-«,+o] be a convex and Gateaux differentiable function.
The modulus of total convexity at x e domf is the function v, :int(domf)x[0,+w) — [0,+o) defined by
v, (x,t)=inf{D (y,x):yedomf]l y—xlIl=t}.
A function f is called to be
(a) totally convex ata point x e int(domf) if v, (x,t) is positive whenever t > 0 ;
(b) totally convex if it is totally convex at every point x € int(domf ) ;
(c) totally convex on bounded sets if v, (B,t) is positive for any nonempty bounded subset B of E and
t >0 where the modulus of total convexity of the function f on the set B is the function
v, rint(domf)x[0,+0) - [0,+x) defined by
v, (B,t):=inf{v (x,t):xe Bndomf}.
Lemma 9 (Reich & Sabach, 2010) If x € int(domf ), then the following statements are equivalent:
(1) the function f is totally convex at x ;
(2) forany sequence {y,} < domf ,!im D,(y,,x)=0= !Lmll y,-xl=0.
Lemma 10 (Butnariu & lusem, 2000) The function f is totally convex on bounded sets if and only if it is sequentially
consistent, i.e., for any two sequences and {x } and {y } in int(domf) and domf , respectively, and {x, }
is bounded, then
Lim D,(y,x,)=0= Limll y,-xI=0.
Lemma 11 (Reich & Sabach, 2010) Let f :E — (-w,+o] be a Gateaux differentiable and totally convex
function. If x, € E and the sequence {D  (x,, X,)} is bounded, then the sequence {x_} is also bounded.
Lemma 12 (Butnariu & Resmerita, 2006) Let f : E — (-, +o] be a Gateaux differentiable function and totally
convexon int(domf).Let x e int(domf) and C < int(domf) be a nonempty closed convex set. If x e C ,
then the following statements are equivalent
(1) z e C isthe Bregman projection of x onto C with respectto f ,ie., z = projcf (x);
(2) the vector z is the unique solution of the variational inequality:
(VF(x)-Vf(z),z-y)=20,VyeC,;
(3) the vector z is the unique solution of the inequality:
D,(y,z2)+D,(z,x)<D,(y,x),vyeC.

|
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Definition 13 (Li & Liu, 2014) Let C be a convex subset of int(domf) and T :C — N (C) be a multi-valued
mapping. A point p e C is called to be an asymptotic fixed point of T if C contains a sequence {x_ } which

converges weakly to p such that limd(x_ ,Tx )=0.

n— oo

We denote by F (T ) the setof asymptotic fixed points of T and F (T ) the set of fixed points of T. That
isS F(T)={xeC:xeTx}.
Definition 14 Let C beasubsetof E and T :C — N (C) be amulti-valued mapping with a nonempty fixed point
set. Amapping T is called to be:
(a) Bregman firmly nonexpansive if
D, (x,y)+D, (y ., x)+D, (X, x)+D, (y,y)
< Df(x*,y)+ Df(y*,x), VX,y e C,x*eTx,y*eTy;
(b) Bregman strongly nonexpansive with respect to a nonempty F (T) if
D,(p,z2)<D,(p,x),VxeC,pe If(T),z e Tx
and if whenever {x } c C is bounded, p e F (T) and

lim[D (p.x,)-D . (p,z,)]=0,

n— oo

then lim D (x,,z,) =0 where z_ e Tx ;

n— o

(c) Bregman relatively nonexpansive if F (T ) = F (T) and
D,(p,2)<D,(p,x),VvxeC,peF(T), zeTx,
(d) Bregman quasi-nonexpansive if
D,(p,z2)<D,(p,x),VxeC,peF(T), zeTx,
(e) Bregman quasi-asymptotically nonexpansive if there exists a real sequence {k } < [1,+x) with

lim k=1 such that

n— w

D,(p,z)<k D,(p,x),vxeC,peF(T),zeT"x; (1)

(f) Bregman totally quasi-asymptotically nonexpansive, if there exist nonnegative real sequences

{v 3} {u} withv, - 0,4, — 0 (as n - o) and a strictly increasing continuous function

¢ :R" > R" with £(0) = 0 that

D,(p,2) <D, (p,X)+V,{(D,(p.X)+pu,,vn=21,VxeC,peF(T),zeT x;

(g) closed if for any sequence {C } where C, < C forall n>1 with xe C and d(T(C,),y) - 0

where y e C ,then y e Tx .

Remark 15 From these definitions, it is obvious that

(1) each Bregman relatively nonexpansive mapping is a Bregman gquasi-nonexpansive mapping;
(2) each Bregman quasi-nonexpansive mapping is a Bregman quasi-asymptotically nonexpansive mapping.

If taking, k, =1, then we have

9A1TIMENAIERTYINN TN 23 (1TUT 1) WNTIAN - Y WA, 2561 335



UNAINNIRE

D,(p,z)<D,(p,x)=k D, (p,x),VvxeC,peF(T),zeT"x;

(3) each Bregman quasi-asymptotically nonexpansive mapping is a Bregman totally quasi-asymptotically
nonexpansive mapping. If taking, ¢ (t) =t,t>0,v_ =k -1 and x, =0, then equation (1) can be
rewritten as

D,(p,z2)<D,(p,x)+V (D, (p,X)+u,VxeC,peF(T),zeT"x.
This implies that each Bregman relatively nonexpansive mapping must be a Bregman totally quasi-
asymptotically nonexpansive mapping but the converse is not true.
Let C be a nonempty closed convex subset of a real reflexive Banach space E , and let
G :C xC — R be a bifunction satisfying the following conditions:
(C1) G(x,x)=0,VxeC;
(C2) G(x,y)+G(y,x)<0,vx,yeC (G ismonotone);

(C3) limsupG(tz+ (1-1t)x,y)<G(x,y),VX,y,zeC;

t>0'

(C4) G (x,-) isconvexand lower semi-continuous, Vx e C .
Definition 16 A function f : E — (-, +0] is said to be

(1) coerciveif lim f(x) = +o ;

Il — +oo
o f(x)
(2) strong coercive if lim
Il — +o0 || X"

=+ .

Lemma 17 (Darvish, 2015) Let f :E — (-o,+o] be a strong coercive Legendre function and C be a
nonempty closed convex subset of int(domf ). Let ¢ :C — R be a proper lower semi-continuous and convex
function. Assume that G :C xC — R satisfies conditions (C1)-(C4). For x e E , define a mapping
Reséyw ‘E — 2° as follows:

Res;w(x) ={zeC:G(z,y)+o(y)—@p(z)+(VIi(z)-Vf(x),y—-2)=20,VyeC}.
Then the following results hold:

(1) Res,  is single-valued and dom(Restvw) =E;

f
G.p
£ ' o
2) Res;  is Bregman firmly nonexpansive;

(4
(3) MEP(G,¢) isaclosed and convex subsetof C and MEP(G,¢) = F (Restvw) ;
(4) forall x e E,ue F(Res, ), D, (u,Res, x)+D (Res; x,x)<D, (u,x).
Lemma 18 (Kassay et al., 2011) Let f : E — (-, +wo] be a Legendre function such that V f " is bounded on
bounded subsets of int(domf)and x e E . If {D, (x,x,)} is bounded, then the sequence {x_} is bounded.

Lemma 19 (Li & Liu, 2014) Let E be a real reflexive Banach space and C be a nonempty closed convex subset

of E and f:E — (—w,+x] be a Legendre function. Let T:C —- C be a Bregman totally quasi-

|
9A1TIMENAIERTYINN TN 23 (1TUT 1) WNTIAN - Y WA, 2561 336



UNAINNIRE

asymptotically nonexpansive multi-valued mapping with respect to f . Then the fixed point set F(T) of T is a
closed convex subset of C .

Lemma 20 (Reich & Sabach, 2010) Let f : E — (-«,+w] be a Gateaux differentiable and totally convex
function, x, € E and C be a nonempty closed convex subset of E . Suppose that the sequence {x } is
bounded and any weak subsequential limit of {x } belongsto C . If D (X ,x,) < D ( projcf (%,), x,) forany
n >1,then {x } converges strongly to projcf (x,) -

Definition 21

(1) A countable family of multi-valued mappings {T,:C — N (C )}f’:1 is said to be uniformly Bregman totally

quasi-asymptotically nonexpansive if F = ﬂ F (T,) = @ and there exist nonnegative real sequences

i=1

{v.} {u,} v, > 0,4, — 0 (as n > o) and a strictly increasing continuous function ¢ : R"> R’
with ¢ (0) = 0, such that
D,(p,2.)<D,(p,x)+V (D, (p,X)+u,, peF(T),Vz eT "x,xeC.
(2) A multi-valued mapping T : C — N (C) is said to be uniformly L - Lipschitz continuous if there exists a
constant L > 0 such that

HT"x,T"y)< Ll x—yll, Vx,yeC .

Main results

In this section, we propose a new iterative method for finding common solutions of mixed equilibrium
problems and common fixed points of uniformly Bregman totally quasi-asymptotically nonexpansive multi-valued
mappings in the framework of reflexive Banach spaces and prove the strong convergence theorems under some
suitable control conditions.
Theorem 1 Let E be a real reflexive Banach space and f : E — (—o,+o] be a strong coercive Legendre
function which is bounded, uniformly Frechet differentiable and totally convex on bounded subsets of E . Let C
be a nonempty closed convex subset of int(domf), {T,:C — N (C)}, be a countable family of closed and
uniformly Bregman totally quasi-asymptotically nonexpansive multi-valued mappings with nonnegative real
sequences {v },{x,} and a strictly increasing continuous function ¢ : R" > R’ such that v, > 0,u, -0
(@s n— o )and ¢ (0) =0 and T, beauniformly L, - Lipschitz continuousforeach i >1.LetG :C xC — R
be a bifunction satisfying conditions (C1)-(C4) and ¢ : C — R be a proper lower semi-continuous and convex

function. Suppose that Q = ﬂ F(T)n MEP(G,p) = & .Let {x, } be asequence generated by

i=1
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i1

(

|

| x, = x e C,chosen arbitrarily,

W, :G(W,,Y)+e(y)—eW,)+(Vi(w )-Vf(m ) y-w)20VyeC,m T x i1,
JCHZ{ZECZSUpr(Z,W;)SDf(Z,Xn)+§n}, (2)
|

|

|

|

where & =v supd (D, (v,x,))+ u, and proj; is the Bregman projection of E onto D .
veQ !

If Q = ﬂ F(T,)n MEP(g,¢) isbounded, then the sequence {x,} converges strongly to X = proj; X .

i=1

Proof We divide the proof into 8 steps as follows:
Step 1: We show that Q is a closed convex subset of E . By Lemma 19, we obtain that F (T,) is closed and
convex for each i 21 . Using Lemma 17, we get that MEP (G, ¢) is closed and convex. This implies that Q is
also closed and convex.
Step 2: We will prove that C | isanonemptysetforall n >1.Let ve Q be given. Since Restvw is a single-valued
mapping and W; = Reséyw(m;) where m! e T,"x_, forall i > 1, it follows from Lemma 17(4) that

D, (v,Res; (m,)+ D, (Res, (m)),m))<D, (v,m). (3)
This implies that

D, (v, Res;(ﬂ(m;)) <D, (v,m;) - D, (Res;w(m;), m;)

<D,(v,m)),Vi>1.

Therefore

Df(v,w;) = Df(v,Resélw(m;))

<D,(v,m)) (5)
SD(v,x,)+ V. d(D,(v,x )+ u,.
This implies that
D,(v,w.)<D, (v,x)+¢& ,Vi>1, (6)

where & =v supd (D, (v,x,))+ u, . Itfollows that

veQ

supr(v,W;)ng(v,xn)+§n. (7)

izl

Thisyields ve C_ forany n >1.Hence Q < C andthenwehave Q c D, .
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Step 3: We show that C  isaconvexforalln>1.let p,ge C_andte (0,1).Settingu =tp+ (1-t)qg.We
now prove that ueC_ . Since p,qeC_ , we obtain that supr(p,wl)s D,(p,x,)+¢&, and
i1

sup Df(q,w;) <D, (q,x, )+ ¢, .Foreach i1, bydefinitonof D, (-,-) ,we have

i1

F(x,) = (W) <(VE(W), p=w)=(VE(X), p=Xx)+¢& (8)
and
fF(x,) = (W) <(VE(w),q-w)—(VI(x),q-x)+¢,. 9
Therefore
fF(x,) = f(w)<(VE(w),tp+ (@-t1)g-w,)—(VF(x,),tp+@L-t)g-Xx)+¢&, . (10)
This implies that
FOx,) = Fw)) < (VE(w)u—w)—(VE(x)u=-x)+& Vizl. (11)

Therefore u e C andthen C  is convex. This yields D is also convex.
Step 4: We show that C isaclosedset. Let {z }c C_and z, - z as m — o . Then
f(x)—f(w)<(VE(w),z —w)—(VF(x )z -x)+¢&
:(Vf(w;),zm—z+z—w:]>—<Vf(xn),zm—z+z—xn)+4‘n
:(Vf(w;),zm—z)+(Vf(w;),z—wr:)—(Vf(xn),zm—z>

—A(VE(X ) z=-x)+ &,

Taking m — o , we get that

f(x,)- f(W)<(VE(w)),z-w))—(VF(x) z-x)+¢& ,Vi>1. (13)
Therefore z e C | and then C is closed. This implied that C | is a closed and convex set forany n > 1, then so
is D . Thus the sequence {x_ } is well-defined.

Step 5: We prove that {x } is bounded. From x = proj; X , by Lemma 12(3), we have

+1

. f
D, (x,.,,x) =D (proj, x,x)

st(v,x)—Df(v,proj; X) (14)

A

< D (v, X),

forall ve Q . Hence the sequence {D , (x x)} is bounded. By Lemma 11, we have {x } is also bounded.

n+1’

Step 6: We prove that {x_ } is a Cauchy sequence. Since x_ = proj;"x and x,_ , = projgmx eD ,cD,,
from Lemma 12(3), we have
D, (X,,,» proj;nx) +D, (proj;nx, X)< D, (X,,,,X). (15)
It follows that
D, (X, ,.%,,,)+D, (x,,,,X)<D,(X,,,,X). (16)

9A1TIMENAIERTYINN TN 23 (1TUT 1) WNTIAN - Y WA, 2561 339



UNAINNIRE

This implies that {D , (x,, x)} is nondecreasing and it is also bounded. Therefore lim D, (x_, x) exists. By the

n— o

construction of D , we define D = N C, forall n et . This implies that D, = D forall n > 1and hence
i=1

1
{D,} is a decreasing sequence of sets. It follows that for any m >n , we have that D < D  and
X, = projDf xe D, _, < D, . Therefore

D, (x,,%,)<D,(x,, proj;Hx)

<D, (x,,x)- Df(proijHx,x) (17)
=D, (x,,x)=-D,(x,,X).
Letting m,n — o , we obtain that
D,(x,.,x,) > 0. (18)
It follows from Lemma 10 that
mIinm Ilhx, —-xl=0. (19)

This implies that {x, } is a Cauchy sequence.

Step 7: We show that {x } converges to a point in Q := ﬁ F(T,)» MEP(G,¢) . Since C is complete and
i=1
{x .} is a Cauchy sequence, without loss of generality, we assume that
lim x = x eC . (20)

We now prove that x e F (T,) foralli >1.Taking m =n+1,we obtainthat lim D (x

n— o

x,) =0.BylLemma

n+1’
10, we have

limll x
n

n— o

~-xl=0. 1)

+1

. . f
Since x, ., = proj, x e D, c C, ,wehave

+1

supD, (X, ,, W) <D, (X X )+E, (22)

i1

n+1’?

where & =v supd (D (v,x,))+ u, . It follows from lim D, (x

veQ n— o

x,)=0 and v, > 0,u, — 0 (as

n+1’

n — o ), we have

n— o i>1

lim [supr(xM,w;)j:O. (23)

Moreover, since supr(v,w;)st(v,xn)+§n and f is lower semi-continuous, we get that

i1

{D,(v,x,)+ §n}(::1 is bounded. Therefore {D | (v, Win)}::1 is bounded. By Lemma 18, we obtain that {w;}::1
bounded. This yields

liml x,_, —w.ll=0,Vi>1. (24)

n— o«
Since
i i
hx, —w il <0 x —x 0F+0x  —wl, (25)
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we obtain that

liml x, —wll =0,Vi>1. (26)

n— o

Since f is uniformly Frechet differentiable, it is also uniformly continuous. It follows that

lim | f(x)— f(w')|=0,Vi>1. (27)

n— o«

Furthermore, we have

D,(v,x,)=D,(v,w)) = f(v)= F(x,)=(VF(x,),v=x)-[f(v)- f(w.))—(Vf(w)),v-w)]

fFQwl) = F(x,)+(VE(W!),v-w)—(VF(x,),v-x,)

fw!)— F(x )+ (VEW.), x —w +v—x)-(VF(x),Vv-x) (28)

FW Y= F(x )+ (VEW ), x —why+ (VE(W! ), v—x )= (VE(x)v-x)

f(w)) = F(x,)+{(VE(W)),x, —w))+(VE(w))=VFf(x,),v-x).
Since {w;}f:1 is bounded, we obtain that {V f (win)}::1 is also bounded. Therefore

lim (D, (v,x,)- D, (v,w,))=0,Vi>1. (29)
Since w; = Resévw(m:‘) where m! e T."x_, by Lemma 17(4), we have

Df(W;,m;) = Df(Rest’q)(m;),m;)

gDf(v,m:])—Df(v,Res;¢(m;)) (30)

A

<D, (V,x,)+V (D, (v,x )+ u, —D, (v,w)).
Since {D, (v, x,)} is bounded, we have {¢ (D, (v, x,))} isalsobounded. Using the factthat v. — 0,z — 0

as n — oo, we have

lim D,(w,m))=0,vi>1. (31)
By Lemma 10, we have
liml wo-mll=0vi>1. (32)
Since
x, —mil < x, —will +I w)—mlI, (33)
we obtain that
liml x, -m!l =0,vi>1. (34)
This implies that
lim d(x,,T,"x,)=0,Vix>1. (35)
Since
x =mil < x" = x I+ x, —m}l, (36)
it follows that
liml x" —mll=0,vi>1. (37)

n— o
e
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This implies that

limd(x,T,"x,)=0,vix1. (38)

n— oo

Using the uniform L, - Lipschitz continuity of T, : C — N (C ), foreach i > 1, we have

n+1 n+1 n+1 n+1

H (T % T 0% ) < H(T % T 0%, )+ d (T770x 0%, +d(x, %) +d(x, T )
(39)
< (L +1)d(x,,, x ) +d (T x, %)+ d(x,,T,"x,).
We get that lim H (T,""x,,T,"x_) = 0 . Furthermore, we have
d O, T ) < d (LT X))+ H (T L T ) (40)

Therefore d (x ,TT,"x,) - 0 as n — o, Vi >1. From the closedness of T, it yields that x" e T,x" for each

i >1 . This implies that x e ﬂ F(T,) . Since f is uniformly Frechet differentiable, we obtain that Vf is

i=1

uniformly continuous on bounded sets. It follows that

liml Vf(w )-Vvfim)l=0,vi>1. (41)

Since w, = Res_ (m') where m e T,"x ,we have
G(W., Y)+o(y)-p(w)+(Vi(w)-Vf(m)),y-w)>0vyecC. (42)
By using (C2), we obtain that

P(Y) - (W) +(VE(w)-Vf(m)),y-w)=>-G(w.,y)

i (43)
>G(y,w ), VyeC,ix1.
Since .!Lnl w; =x and G , @ are lower semi-continuous, we have
Iirr‘]rLiwnfG(y,w:])sIirp_}i:f(go(y)—(p(w;)+<Vf(w:])—Vf(m;),y—w;>)
<limsup (@(y)—@(w,)+(VF(w,)=Vf(m ) y-w)) Vi1 (44)
This implies that o
Gy, x)<op(y)-p(x). (45)
Forany ye C and te (0,1),let y, =ty + 1-t)x e C ,we have
G(y,.x)+o(x)-p(y)<0. (46)
Therefore
0=G(y,y)+e(y)-e(y,)
=Gy, ty+@-)x )+ oty +(@-1)x)-ep(y,)
<SG (Y, y)+(1-1)G (Y, X ) +tp(Y)+ A-p(x)—te(y) - 1-)e(y,) (&7
=t[G(Y N+ -e(y)]+A-D[g(y . x)+o(x) -0 (y)]
<t[G(y, V) +o(Y)-e(y)]

It follows that

Gy, Y)+o(y)-e(y)=0. (48)
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From (C3), we have

0<limsup(G(y,y)+e(y)-e(y,))
= limsup (G (ty + (1= )X, ¥) + 0 (y) -0 (¥,)) (49)

SG(X,y)+o(y)-o(x).

This shows that x € MEP (G, ¢) . To sum up, we have x e Q := ﬂ F(T,)n MEP(G,p).

i=1

Step 8: We show that {x, } converges strongly to x = proj; x . By Lemma 17 and Lemma 19, we obtain that
ﬂ F(T,)» MEP(G,¢) is a nonempty closed convex subset of E . Therefore proj; x is well-defined. Since
i=1

projoxe Q c D, c D, ,,itfollows from x_ = proijHx that

D, (x,x) <D, (proj.x,x) . (50)
Using Lemma 20, we have x, — projgi x (as n — o ). Therefore the sequence {x } converges strongly to
X = proj, x . This completes the proof.
Remark 2 In the proof of Theorem 1, we can observe that from the iteration (2), we choose x, = x e C . Foreach
i >1,wechoose m, e T,'x, . By Lemma 17, we obtain that

Res. (m;)={zeC:G(z,y)+o(y)-@(z)+(Vi(z)-Vi(m]),y-2)20,vyeC}
is single-valued. Therefore we can suppose that the element in this set is w, . It follows that w! e C and
G(w,,y)+o(y)-o(w )+ (Vf(w )-Vi(m ),y—-w))>0,VyecC .Inthe proof of Theorem 1, we prove
that C, is a nonempty closed convex set and then D, is also a nonempty closed convex set. Therefore we can
find x, € C . lItfollows that {x } is well- defined.
Example 3 (Chang et al., 2013, Example 2.11) Let C be the unit ball in a real Hilbert space 1? and f (x) = ||x||2 .
Since VTf (y) = 2y, the Bregman distance with respectto f is
Df(x,y):||x||2—||y||2—2< Yy, X—y>= ”x— y”Z,VX,ye C.

Let {Ti}iil :C — N (C) be a family of multi-valued mappings defined by

T,(x " % = {00, (x") % a,x Y ax L3, v x Ly e C
i)q © . . 0 1 n
where {a"” - isasequencein (0,1) suchthat [ . ,a =—. Let Jk. =2 and 4/k =2]] ,a. ,n>2.
i j=1 j=2 7j 2 1 n j=2 7j

Therefore limk =1.Lettingv, =k -1(n>2), {(t)=t(t>0) and {« } be a nonnegative real sequence

n—

with z2, — 0 (as n — o). Chang et al. (Chang et al., 2013) proved that {T,}", is a family of closed and
uniformly Bregman totally quasi-asymptotically nonexpansive mulit-valued mappings with nonnegative real
sequences {v_},{x } and a strictly increasing continuous function ¢ : R " > R" such that v, > 0,u —>0
(@s n— o )and ¢ (0) =0 and T, be auniformly L, - Lipschitz continuous foreach i > 1. Let G(x,y) =0 for
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all x,ye C and ¢(x) =0 forall xe C . Let {x } be a sequence generated by (2), then {x, } converges

strongly to x = proj; X, where Q := ﬂ F(T,)n MEP(g,¢p) is nonempty.

i=1

Ifin Theorem 1, we consider a single-valued Bregman totally quasi-asymptotically nonexpansive mapping

and setting ¢ = 0, we obtain the following corollary.
Corollary 4 Let E be a real reflexive Banach space and f : E — (-,+w] be a strong coercive Legendre
function which is bounded, uniformly Frechet differentiable and totally convex on bounded subsets of E . Let C
be a nonempty closed convex subset of int(domf), T :C — N (C) be a closed and Bregman totally quasi-
asymptotically nonexpansive multi-valued mapping with nonnegative real sequences {v }.{# } and a strictly
increasing continuous function ¢ :R* — R’ such that v, > 0,4, -0 (asn—o)and £(0)=0 . Let
G :C xC — R be a bifunction satisfying conditions (C1)-(C4). Assume that T is uniformly L - Lipschitz
continuousand IT = F(T) N EP(G) = & . Let {x } be a sequence generated by

[

i x, = x € C,chosen arbitrarily,

|wn (G (w,,y)+(Vf(w )-Vf(m ) y-w)=20VyeC,m eT"x,
C,={zeC:D (z,w, )<D (z,x,)+¢}, (51)
| .
i D, = ﬂl c,
| iy
| Xoua = PFOjp X,

where & =v supd (D, (v,x,))+ u, and proj; is the Bregman projection of E onto D . If TT is bounded,

vell

then the sequence {x, } converges strongly to X = proj,f X .
As a direct consequence of Theorem 1 and Example 5, we obtain the convergence result in regard to
Bregman totally quasi-asymptotically nonexpansive multi-valued mappings in uniformly smooth and uniformly

convex Banach space. There we immediately obtain the following corollary.

1
Corollary 5 Let E be a uniformly smooth and uniformly convex Banach space and f(x)=— xlI °
p

(1< p <x).Let C beanonempty closed convex subset of int(domf), {T,:C — N (C)}, bea countable
family of closed and uniformly Bregman totally quasi-asymptotically nonexpansive multi-valued mappings with
nonnegative real sequences {v_}.{x } and a strictly increasing continuous function ¢ : R" > R" such that
v, > 0,4, >0 (@sn—w)and £(0)=0.LetG:CxC — R be a bifunction satisfying conditions (C1)-
(C4) and ¢ : C - R be a proper lower semi-continuous and convex function. Assume that T, is uniformly L, -

Lipschitz continuous for each i > 1
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and Q : ﬂ F(T,)n MEP(G,p) # @ .Let{x } be asequence generated by

[
|
|x = X e C,chosen arbitrarily,
Iw' G(w,, Y)+@(y)—@(w)+(J (w)=-J (m)y-w)=0VyeC,m eT x izx1,
JC ={zeC:supD, (z,w.) <D, (z,x,)+¢&} (52)
| i>1
| n
|D, = ﬂC
| i=1
{x = prOJD
where & =v supg (D, (v,x,))+ u, and projDf is the Bregman projection of E onto D . If

veQ

o

= ﬂ F(T,)n MEP(G,¢) is bounded, then the sequence {x,} converges strongly to x = projgz X

i=1

Conclusion

In this paper, we could extend the strong convergence theorems for equilibrium problems and Bregman
totally quasi-asymptotically nonexpansive single-valued mappings appeared in (Zhu & Huang, 2016) to the strong
convergence theorems for mixed equilibrium problems and Bregman totally quasi-asymptotically nonexpansive

multi-valued mappings in the setting of real reflexive Banach spaces.
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