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Abstract

A kinetic model for avascular tumor growth is presented. The model includes an immune surveillance
mechanism that recognizes the cancerous cell and makes the cell susceptible to certain binding reactions. The
particular binding interactions of interest are those that lead to the formation of tumor-immune complexes consisting
of the cancerous cells and cytotoxic agents (effectors) such as cells or biochemical which can cause the apoptosis
of the cancerous cells. The model allows for the possibility of the cancerous cells escaping the immune activity
after the binding reactions have occurred, or dying but not undergoing apoptosis when the immune agents are
ineffectual. A stochastic cellular automata model on a three-dimensional cubic lattice is used to implement the
kinetic model. The simulation results, such as the growth curves are explained at a kinetic microscopic scale. The
sensitivity analysis of the effects on parameters from the morphologies of simulated tumors by measuring the spatial
distribution of proliferating cells will be presented. The model shows that an increase in the dormancy rate leads

to an increase in the density of the proliferating cells in the outermost region.

Keywords : stochastic model, in silico model of tumor growth, model on a cubic lattice,

tumor growth with immune response

Introduction

Cancer is the un-controlled growth of cells. The transformation of a cell from a normal one to a malignant
one is the consequence of the expression of genes called oncogenes. The cells with these oncogenes have the
ability to invade the space occupied by healthy cells and evidently cause their death. The immune system which
attacks the cancerous cells is a complex one. Evidence has been accumulating that the immune system (cytotoxic
agents such as the CD8+, the T cells, the NK cells or the phagocytes) of the body can eliminate the malignant cells
after they are identified as such. Its essential function is to suppress the cancer growth in both in vivo and in vitro
(details are given in Abbas & Lichtman, 2011; Kasiske et al., 2004; Le Mire et al., 2006; Kataki et al., 2002; Hanahan
& Weinberg, 2011; Mocellin et al., 2005; Gajewski et al., 2013; Nieswandt et al., 1999; Parish, 2003).

In tumor biology, the first response of the immune system is to identify a cell as being cancerous. This is
done by the antigen presenting cells (APC’s) and occurs at the beginning of the immune surveillance steps. The
APC’s recognizes the foreign antigens on the surface of the cancerous cells and present them to the T cells. This
causes the immune cells to recognize and mark them as being cancerous cells. After this recognition step, the
cancerous cells form into cancer-complexes with the immunity agents. They can remain as malignant tumor by
evading the immune system or they can become necrosis cells (Hanahan & Weinberg, 2011; Mocellin et al., 2005;

Gajewski et al., 2013; Nieswandt et al., 1999; Parish, 2003). Only after apoptosis (disintegration or fragmentation
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of the nuclear DNA of the cell) new cells be able to grow into the space since it would be vacant. Here we introduce
what we call an effective immune response and an ineffective immune response, i.e., the removal (elimination) or
non removal of the necrosis cells. The explanations of the effective and ineffective immune response to show its
critical role in the immune system to control the tumor, is given in Hanahan & Weinberg, 2011; Mocellin et al., 2005;
Parish, 2003. The cancer growth in vivo is complicated and not fully understood. Eftimie and coworkers (Eftimie
et al., 2011) have pointed out that the micro-environment of the tumor cells includes the immune cells, the fibroblasts
factors, the endothelial cells, the extracellular matrix, signaling molecules (chemokines and cytokines) and the
growth factors (including cytokines and etc.). The interactions between the tumor cells and the other component
of the tumor microenvironment are complex and evolve with time, i.e., they are kinetic in nature. To understanding
of the interplay of these factors on the growth of cancerous cells, various mathematical descriptions of what might
be happening have been given and reviewed in Eftimie et al., 2011 and Preziosi, 2003. The cellular automata (CA)
model is one of these mathematical methods which might be suitable for studying the convergent behavior of
microscopic interaction processes discrete in time and which involve different cell types (Qi et al., 1993; Boondirek
et al., 2006; Boondirek & Triampo, 2009; Boondirek et al., 2011; Matzavinos et al., 2004; de Pillis et al., 2005).

Over the last decade, a number of computational methods have also been proposed to explain cancer
growth which takes into account the response of the immune system, and are given in Qi et al., 1993; Boondirek
et al., 2006; Boondirek & Triampo, 2009; Boondirek et al., 2011; Matzavinos et al., 2004; de Pillis et al., 2005; Mallet
& de Pillis, 2006. Qi and coworkers (Qi, et al., 1993) proposed a kinetic model to explain the tumor growth using
the cellular dynamics which included an immune response. They employed the stochastic cellular automata (SCA)
approach to the tumor growth on a two dimensional square lattice. They simulated the growth curves for different
sets of parameter values. Their simulated curves were Gompertz-like, similar to the shapes of the growth curves of
avascular tumor observed experimentally (Steel, 1977 and Norton, 1988).

In 2006, Boondirek and coworkers (Boondirek, et al., 2006) examined the effects of allowing for avoidance
of the immune surveillance by the cancerous cells had been observed by Hanahan & Weinberg, 2011; Kuznetsov
etal., 1994. They considered the case where the SCA was used to simulate the cancer growth on a two dimensional
square lattice. In a later study, Boondirek and Triampo (Boondirek & Triampo, 2009) extended their earlier study to
a SCA simulation of the cancerous growth on a three dimensional cubic lattice by having more than one million
cells. The simulated results were then compared with some experimental results via Gompertz parameters.
Boondirek and coworkers (Boondirek et al., 2011) extended the work so that a sensitivity analysis could be
performed for some parameter values to explore the efficacy of the parameter values used and how they might

relate to the experimental observation.
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The aim of the present research is to apply the SCA to a three dimensional cubic lattice using a kinetic
model which includes several details for the role of the tumor — immune interaction on the growth of tumors to the
published research work from Boondirek and Triampo (Boondirek & Triampo, 2009). The role of the interactions
has emerged from the studies of the clinical, experimental data, and mathematical models see Abbas & Lichtman,
2011; Kasiske et al., 2004; Le Mire et al., 2006; Kataki et al., 2002; Hanahan & Weinberg, 2011; Mocellin et al.,
2005; Gajewski et al., 2013; Nieswandt et al., 1999; Parish, 2003; Qi, Zheng ef al., 1993; Boondirek et al., 2006;
Boondirek & Triampo, 2009; Matzavinos et al., 2004; de Pillis et al., 2005; Mallet & de Pillis, 2006; Kuznetsov et al.,
1994. A simulation of the tumor growth is presented. Finally, a sensitivity analysis is performed to see the effects
of the dormant parameter values on the growth curves, the spatial distributions of proliferating cells after variation

of the parameter values will be observed and compared with the experimental research by Bru et al., 2004.

Methods
Materials and Methods

Outline of the SCA model
We propose a kinetic model to describe the avascular tumor growth which includes an immune
surveillance, and can lead either to an effective or an in-effective immune response. The chart flow for the model

is given in Fig. 1. The first reaction describes the proliferation of tumor cells by mitosis where the proliferation rate

T
of the in vivo tumor growth is assumed to have a logistical form of r .. =71 (1-——), this is a function of

max

proliferating parameter, 1, and the numberoftumorcells, T. T is the carrying maximum number of tumorous

max

or proliferating cells due to the limitation caused by the restriction of oxygen and nutrients (Qi, Zheng et al., 1993;

Boondirek et al., 2006; Boondirek & Triampo, 2009; Matzavinos et al., 2004).

rﬁf.
r —— 5 2T

Iy
. . domant
mrognize '?:qommi-: * *
T+E ——— C —//» D+E < DrE
T e E

Figure 1 The kinetic model of cancer cells with immune surveillance and suppression. T,C,D, and D *
denotes the number of tumor, tumor-immune complexes, dead tumor (necrosis) cells and dormant

cells, respectively. By E and E * denotes the effective and ineffective immune agents, respectively.

9ANTIMENAERTYSNN TN 25 (1TUT 1) WNTIAN — BB W.A. 2563 403



UNAINNIRE

The second reaction arises when the immune system recognizes an invasive cell as being a cancerous cell by
sensing certain biochemical sites (protein sites) on the surface of the cancerous cell.

As we briefly mentioned, in tumor biology the immune’s role is carried out by antigen presenting cells
(APC’s). The APC'’s are initially present themselves to the T cells which then replicates the APC’s. The newly
replicated APC’s can then combine with another protein to form an effector cell. These effector cells can efficiently
combine with the tumor cells having the antigens that the APC’s had identified at first to form the tumor-immune
complexC . The rate at which this occurs is called the recognition rate of the immune surveillance. It has a logistic

C(t-1)
form given by r =r(l-—

recognize r

), where T, is the recognition parameter and C (t — 1) is the number of

max

tumor—immune complexes cells formed after the cell is tagged at the former time step, and C ,,, is the carrying
capacity (maximum number) for the effector cells which can recognize the tumor cells. The tumor-immune

complexes can lose the tag at an evading rate, r The effectors cells are the agents which causes the deaths

evade

of cancerous cells but not their disintegration. The rate at which the tumor—immune complexes cells is transformed

into a dead tumor cell by cytotoxic activity of the effector cells is denoted with cytotoxic rate, r The final

cytotoxic *
reaction leads to two possible results by the decay and dormant rate. The results of the tumor-immune complexes
cell during this reaction are either an effective immune agent or a dormant dead cell and an ineffective immune
agent, respectively. A disintegration of the cancerous cells by apoptosis is occurred by an effective immune agent

with the decay rate, T, But, when the immune agent is ineffective leads the dead tumor cell cannot to undergo

decay "
programmed disintegration (apoptosis)). The rate at which the second outcome occurs is given by the dormant
rate, r E and E * denote the effective immune cells (agents) and ineffective immune cells (agents),

domant”

respectively.

Figure 2 The figure shows the initial condition of the seven proliferative cells in the middle of the cubic
lattice for the application of the rules for our CA. This CA s rule uses von — Neumann
neighborhood for dynamical change, the six nearest neighboring cells of the middle one (the

unseen middle cell) are located around the middle one, which can be seen.
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The method of the SCA model

(1) The model formulation
The biological assumptions were taken into account when developing the kinetic model. The assumptions are
based on both the clinical and experimental data on the tumor growth when the effects of the immune system is
taken into account given in Abbas & Lichtman, 2011; Kasiske et al., 2004; Le Mire et al., 2006; Kataki et al., 2002;
Hanahan & Weinberg, 2011; Mocellin et al., 2005; Gajewski et al., 2013; Nieswandt et al., 1999; Parish, 2003 and
on the mathematical models given in Eftimie et al., 2011; Preziosi, 2003; Qi, Zheng et al., 1993; Boondirek et al.,
2006; Boondirek & Triampo, 2009; Matzavinos et al., 2004; de Pillis et al., 2005; Mallet & de Pillis, 2006; Kuznetsov
et al.,, 1994. The assumptions are as follows:
1. Tumor is the uncontrolled growth of cells. They can divide by mitosis only if they have enough food and
space to grow by increasing the number of tumor cell. They will divide into two daughter tumor cells with

a proliferation rate, r

prolif.”

2. The immune system is based on three mechanisms to control the tumor growth,

(i) a recognition mechanism of the proliferating tumor cells which allows them to combine with various

agents of the immune system to form into tumor—-complexes cells,
(i) a cytotoxic mechanism which leads the agents to kill the cancerous cells, and

(iii) an apoptosis mechanism which causes the dead tumor cells to undergo apoptosis (or

programmed disintegration).

3. At the recognition stage, the proliferating cancerous cells are recognized by immune surveillance at the

recognize rate, r These then form into tumor-immune complexes cells with agents of the immune

recognize

system.

4. The cancerous cells can escape from tumor—immune complexes cells to be cancerous one if the immune

surveillance of the proliferative cancerous cells is ineffective. This occurs at an evading rate, r

evade "

5. When the immune response within tumor-immune complexes cells is effective, the cytotoxic activity
between the cancerous tumor and the immunity agents will lead to the death of the cancerous cells. This

will occur at the cytotoxic rate, r

cytotoxic ©

6. When the immune response within tumor-immune complexed, it cannot lead to the apoptosis of the dead
cancerous cell, the dead cell is left in a dormant state. It still occupies the space with the inefficiency

immune agent. The rate at which this happens is given by dormancy rate, r,
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7. When the immune response is effective, the mechanism for apoptosis is turned on and the dead cell
disintegrates, freeing up the space. The rate at which this occurs is denoted as the decay rate, r,, .

(2) The Algorithm for the SCA model
The tissue is modeled as a three dimensional cubic lattice having the size, L x L x L = The details of

algorithm for a simulation can be described as the following steps.

Step I. The initial time step: t = 0

The initial condition in CA model is for seven proliferating tumor cells, which are located at the center of

the cubic lattice as seen in Fig. 2. The values of the parameters ofr

s s .. Co
r evade cytotoxic dormant decay max

and T are

chosen. The initial values of the parameters need to satisfy the conditions that each rate must be in the range
between 0 and 1, and satisfy the kinetic model in Fig. 1, that is
o+ <l,r .+ Foorie S 1, r + My S 1.

The initial configuration for tumor and complexes cellsis T (0) =7 andC (0) = 0 .
Step Il. The nexttime step: t =t+1 | startingatt=1

Here, we describe the details of the automata-based model. The updating in SCA model is done
synchronously in discrete space and time with von Neumann neighborhood. The states of each site on the cubic
lattice are updated at most once per time step. The dynamics of cells is determined by a random number chosen,

on the occupations of the surrounding space and on the values of the parameter rates as dictated by the schematics

diagram, shown in Fig.3.

For each proliferating tumor cell at time step ¢, the proliferation and recognition rate are first calculated and
then a cancerous cell is randomly picked one by one with the equal probability until all cells in the simulated tumor
at time t are picked. Then a random number is generated and depending on the occupation condition of space
surrounding the cell, and depending on the value of the random number one of the following changes to the state

of that particular cell will be made until all of the cancerous cells present at time t have been changed,:

(i) Change the number of complex cells, C with a probability given be the recognition rate, "ecognize

during the immune surveillance stage. The recognition rate is calculated by

r =r(
recognize r

where C (t—=1) s the number of complexes cells in the former time step.
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(i) Duplicate two daughters’ tumor cells with the probability of the proliferation rate, . (1) - if there is

at least one vacant nearest neighboring site to the tumor cell site. The nearest neighboring of each

tumor cell can be seen in Fig. 2. The proliferation rate is calculated from

R G}

prolif. p

),

max

where T (t =1) is the number of tumorous cells in the former time step. The daughter’s cell can be
placed in only one cell in the nearest vacant neighboring site of the tumor cell with equal probability-

(iii) Remain in the same state with a probability given by

1 - ( rrecognize (t) + I’prt:llif4 (t) )1

which shows that the probability depends on the proliferation rate of specific tumor cell, the recognition

rate of immune surveillance and the lack of space for tumor to proliferate.

r " r
tecognize eytotonic m dormant
Tevade
P
decay

rpwhf .

Figure 3 The diagram is representing the tumor cell dynamics with immune competition from the kinetic model.

( m = proliferative tumor cell, - = complexes cell, m = dead tumor cell, and = dormant cell).

Next, for each complexes cell at time t, we first pick a random number and then calculate the evasion rate
and the cytotoxic rate and then make one of three possible decisions:

(i) Change the complex to be a dead tumor cell with a probability given by the cytotoxic rate, "ywwx -

This result occurs when the immune surveillance is effective.

(ii) Change to the complex to be proliferative cell with a probability given by the evasion rate, "... .

This results lead to the escape of the tumor cell from the cancer-immune complex.

(iii) Keep in the same state with the probability of 1 — ( Teywxic + Mevece ).
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For each dead tumor cell at time t, we again picked a random number, calculate the dormancy rate and decay

rate and then make the decision which can lead to two possible outcomes:

(i) Change to state to be vacant with the probability of decay rate, "...., . This is caused by an effective
immune response. This results in a vacant space into which a new cell (both normal and

cancerous) can move into.

(ii) Change to state to be dormant cell with the probability given by the dormancy rate, Tiormant . This
is due to an ineffective immune response which does not cause the dead tumor cells to disintegrate
and be removed from the tissues.

Technically, all cells are randomly selected one by one with equal probability and a decision is made to
undertake one of the possible steps that can be taken depending on the value of a new random number which has
generated. We progress iteratively in time step by changing t = t +1 and determine the number (size) of tumorous
cells, N(t) =T (t)+ C(t)+ D(t)+ D *(t), where T (t),C (t), D(t), D *(t) are the number of tumor cells, of
tumor-complexes cells, of dead tumor cells and of the dormant cells at timett .

Step lll. The step Il is repeated in self-organizing method until the desired number of time steps is reached. At

this point, we have a simulated tumor whose growth pattern is determined stochastically.

Results

We have written a program source code to implement the SCA model by using the algorithms described
above. To see the results of our studies, we have simulated the tumor growth at different times and looked at
growth patterns as a function of time. In Fig. 4(a), we plot the numbers of cancerous (tumorous) cells and prolife-
rating cells as functions of time, while in Fig. 4(b), we have plotted the numbers of proliferating cells and of tumor-
immune complexes. The values of the parameters used in the simulations are given in the figure captions of Fig.
4(a). The Fig. 4(a) and 4(b) shows the results from one simulation with 250 time step and 350 time step, respectively.
We see that the simulation yields a Gompertz like curve. As is well known, the Gompertz growth curve has been
most used to fit the experimental data for in vivo tumor growth (Steel, 1977; Norton, 1988; Demicheli et al., 1991;
Cameron et al., 2001). In Fig. 4(a) is a plot of the time evolution of the tumor size, the size of a tumor reflects the
number of tumorous cells, N (t) . Fig. 4(c) shows the snapshot of simulated tumor at t = 25, 100, 200, and 250
time steps. The simulated tumors consist of four types of tumorous cell: proliferative tumor cells, tumor- immune
complexes cells, dead tumor cells, and dormant cells.
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350000 -
325000 ] — The tumorous cells, N(t)

The proliferating tumor cells, T(t)

300000 -
275000 -
250000 -
225000 -
200000 -
175000 ~
150000 ~
125000 ~
100000 ~
75000
50000 -
25000
0

—

cells

~

The number of cells

T T T T T T T 1
0 25 50 75 100 125 150 175 200 225 250 275

Time steps

Fig. 4(a) Plots of time evolutions of the number of tumorous cells and number of proliferating cells from the

=0.1,r =0.4,r =03, r = 0.5, and

cytotoxic ? "dormant decay

parameter settingis r, = 0.5,r = 0.05,r

evade

T,..=C,.. =100 000.

max

100000
—o— T(t), Proliferating tumor cells
90000 —— C(t), Tumor-Complexes cells

80000

70000

60000 -

50000

40000

30000 -

The number of cells(cells)

20000 -

10000

04 a
T T T T T T

T T
0 50 100 150 200 250 300 350

Time steps

Fig. 4(b) Plots of time evolutions of the number of proliferating cells and number of tumor-immune complexes

cells. The parameter setting is the same as in Fig. 4(a).
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t=25 t =100 t=200 t =250

Fig. 4(c) The snapshot of simulated tumor shows the evolution of tumor size were generated by the SCA model
hybrid the kinetic reaction is typically, shown on a 151x151 lattice. Typical simulated tumor after
time steps of 25, 100, 200, and 250, respectively. The simulation setting is the same as Fig. 4(a). The
simulated tumor with the four tumorous cell types, proliferative tumor cells, tumor-immune complex cells,
dead tumor cells, and dormant cells with the different color green, brown, red, yellow, respectively.

( - = proliferative tumor cell, .’ = complexes cell, m = dead tumor cell, and = dormant

cell).

» The ratio of proliferating cells contained in the innermost region
2 The ratio of proliferating cells contained in the intermediate region
o The ratio of proliferating cells contained in the outermost region

Q§
0.8 Qj%mm”

0.9+

0.7 4 o
0.6
0.5 a
0.4 - ©
0.3

0.2 R

N

N
0.1 e

0.0

The ratio of the proliferating cells
in each of the three regions in simulated tumor

T T T T
0 50 100 150 200 250
Time steps

Fig. 4(d) Typical plots of the time evolution to show the ratio between the number of proliferated cells and the
number of tumorous cells in the innermost, intermediate, and outermost region as defined by Bru and

coworkers (Bru et al., 2004). The values of the parameters are the same as those used in Fig. 4(a).
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They are color coded in the Fig. 3. Bru and coworkers (Bru et al., 2004) defined three regions in the avascular

tumor. With the average radius of tumor being R and r, as the distance of a proliferating cell i from the center of

R
tumor, a cell is located in the innermost regions when r, was in the range 0 < r, < —, the cell is in the intermediate
2

R 4R
regions when r, is in the range — < r, < —— and the cell is in the outermost regions when r, was in the range
2 5
4R ) . . . .
r. > — . Bruand coworkers (Bru et al., 2004) measured the number of proliferating cells in the three regions in
5

a human colon adenocarcinoma tumor. Fig. 4(d) shows plots of the time evolution of the ratio of the number of
proliferated cells and the number of tumorous cells in the innermost, intermediate, and outermost region as defined
by Bru et al., 2004.

To see the effects changing the dormancy rate r on the growth of the cancerous tumor, we have simulated

dormant

the growth when r has been varied but the values of the other parameters have kept constant at the values

dormant
given in the caption of Fig. 5(a). Fig. 5(a) shows the simulated tumor growth curves when the dormancy rate is
varied from 0.00 to 0.06 in steps of 0.02. Snapshots of the cross sections of the simulated tumor are shown in Fig.
5(b). We see that the morphologies of simulated tumors exhibit different amounts of dormant cells in the tumor and

is increased. We see that increasing r will

dormant

the spatial distribution of proliferating cells changes when r,
cause increases in the number of dormant cells in the inner and intermediate regions inside the simulated tumor.
This leads to the result that most of the proliferating cells will be located at the perimeter of the simulated tumor cell

clusters.

1800000 o

dormant rate = 0.00

- - - dormant rate = 0.02

] --- - dormant rate = 0.04 . .
1400000 ---- dormant rate = 0.06 P

1600000

1200000 o
100000 i
£0000¢ i
600000 i

400000

The number of tum orous cells
with different dormant rates

200000 |

T T T T T T T T
-2% 0 2% 50 TE 100 125 150 175 200 225 ZED 27EH 300 228

Time steps

Fig. 5(a) The simulated tumor growth curves when the dormancy rate is changed. The simulated growth curves

are for r being increased from 0.00 to 0.06 in steps of 0.02, with the carrying capacities being

dormant
Thax = Cha =1 000 000 and the values of the other rates are r = 0.7,r = 0.05, and
r =0.1r =04,r =0.5.

evade cytotoxic decay
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Fig.5(b) The snapshots of the cross sections of the simulated tumor which were generated by the SCA are shown
ona 271x 271 lattice after 300 time steps. The tumors seen are the simulated tumors when the

dormancy rate is increased from 0.00 to 0.06 in steps of 0.02 from the left to right.
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The dormant rate

Fig. 5(c) The spatial distribution of simulated tumor using the same values of the parameters used to obtain Fig.
5(a). This figure shows the averaged ratio of the number of proliferating cells and the number of

tumorous cells as the number of time steps is increased from 250 to 300.

This is in agreement with the findings of Bru and coworkers (Bru et al., 2004) who found that the outermost
regions of a tumor contained the proliferating tumor cells. They found the ratio of proliferating cancer cells found in
the three regions of tumor to be in order 80:14:6 where the ratio is for outermost to innermost, meaning that most of
the cancer growth is taking place in the outer layer. This expected since any cells in the innermost layer do not

have many vacant spaces next to them and they would not be proliferating.
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Discussion

We carry out a sensitivity analysis of the dormancy parameter since this parameters affects the spatial
distribution of proliferating cells within the tumor. This is done by varying the value of the dormancy ratio from 0.00
to 0.06 in steps of 0.02 and determining the increases in the numbers of proliferating cell in the three regions when
the number of time steps to increase from 250 to 300. The results of these determinations are plotted in Fig. 5(c)
which shows that the ratio of the number of proliferating tumor and the number of tumorous cells in each region
tends to asymptotical limits as dormancy rate increases and that the end result of an increase in the dormancy rate
will increase the number of proliferating cells in the outermost region. This is in agreement with the conclusion of

Bru and coworkers (Bru et al., 2004).

Conclusions

In this research, we have studied the growth of cancerous avascular tumors by simulating its growth with
a model which includes interactions between the cancerous cells and different parts of the immune system. The
interactions are based on what has actually been seen clinically. These include the observations that one of the
task of the immune response is to survey and identify which of the cells is cancerous. The same mechanisms that
leads to the identification of the cancerous cells also lead to the formation of cancer-immune complexes which have
important roles in causing the cytotoxic activity (death but no disintegration of the cell) and apoptosis (death and
disintegration). Apoptosis makes it possible for a different cancerous cell to proliferate through mitosis (the process
which leads a cell to separate into two daughter cells). Without the apoptosis mechanism activated by an effective
immune response, a dead cell will becomes a dormant cell preventing new cells from moving into its space. The
model also includes the possibility that the cancerous cell can escape from the complex and proliferate again by
activating the escape mechanism in the proliferating cancer cells.

Altogether there are six transition rates: a rate for recognizing a cancerous cell, a rate of proliferation,
a rate for a cancerous cell to escape (evade) from the tumor-immune complex, a rate for cytotoxic activity to take
hold, a rate for a dead cell to be become dormant, and a rate for the disintegration of a dead cancerous cell. The
decisions as to what cellular transitions are determined by picking random numbers and establishing the rules for
the taking the different choices. The entire process leads to stochastic cellular automata (SCA) approach.

We have applied our cellular automata model to a cubic lattice and have simulated the growth of the tumor.
We find that the growth curves of the different types of cancerous cells; proliferating cells, dormant cells, dead
tumor cells and tumor-immune cell complexes appear as Gompertz-like curves, which is the shape of the

experimental growth curves of human colon adenocarcinoma tumor obtained by Bru and coworkers (Bru et al.,
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2004). Our computer simulations, Figs. 5(b) and 5(c), also show that the densities of the proliferating cells is the
greatest in the outermost region of the cancerous cells which is also agree with Bru and coworkers (Bru et al., 2004)

observed.
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