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Abstract
In this paper, we give a formula to count the exact number of a special type of 3 x 3 magic squares of

nonnegative integers. We also present a simple algorithm to construct such magic squares.
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Introduction

There are various types of magic squares and one of the well-known is normal magic square which is a

square matrix of order n’ whose entries are distinct numbers from 1 to n~ such that the sum of the numbers in

every row, in every column, and in each diagonal is the same number, called the magic constant, which depends

nin" +1)
only on n and has the value —— . Numerous papers have been written about finding the number and
2

constructing many types of magic squares. For example, normal magic squares exist for all orders n , except n = 2
, there is only one normal magic square of order 3 (does not include rotations and reflections), total number of
possible 4 X 4 normal magic squares is 880, etc. (Sallows, 2013; Sierpinski, 1988).

In 1997, Bona presented a new proof of a formula to find the number of a class of 3 X 3 magic squares in
which all entries are nonnegative integers with repetition allowed, and all row sums and column sums have the

same number r . He showed that the number is equal to the sum of three binomial coefficients as follows

(r+4\ (r+3\ (r+2\

| |+ | [+ ] | (Bona, 1997).
R A S N

In 2008 Xin studied a class of 3 x 3 magic squares which all entries are distinct nonnegative integers
such that every row sum, column sum, and two diagonal sum are equal. He showed that this type of magic squares
can be generated by three basis elements (Xin, 2008).

In this paper, our objective is to study a class of 3x 3 magic squares which lies between those two
classes of magic squares studied by Bona and Xin. For any given nonnegative integers k and r, we denote by
M (k,r) the set of all 3 x 3 magic squares defined by:

(i) all entries are greater than or equal to k with repetition allowed,

(i) the sums along rows, columns, and main diagonal (all the entries from the upper left corner to the lower
right corner) are all equal to r .

By the above definition, the sum in the anti-diagonal (all the entries from the lower left corner to the upper
right corner) does not necessarily equal r and it is clear that M _(k,r) is asubclass of magic squares studied in
1997 which every line sum is equal to r . In particular, when « = o, then m_(o,r) contains all magic squares
studied in 2008 which every line sum is equal to r .

In Section 3, we give a formula to count the exact number of m («,r) for any given nonnegative integers

k and r . Then, in Section 4 we present an algorithm for constructing such magic squares.
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Methods

By the definition of m («,r), it is clear that the three suitable elements a =a,a, =b and a_=c in

1

Figure 1 below determine all the rest of the square.

a —l |— a r—a—2b+c 2b—c—|

b ...|—)|r—a—c b a—b+c|

|r
R

Figure 1 generating elements of each magic square in M, (kr) .

3

We also see that, if 4 = la,1,, and B = [b,1,,are two magic squares in M (k.r) for which a =b ,a_=b

1 117722 22

and a, = b_then A = 8. This means that each triple (a,6,c) = (a, ,a_,a ) generates only one magic square in

M (k,r) . Therefore, to determine the cardinality of m_(k,r), we only need to compute the number of ways to choose

the triples (a,b,c)=(a, .4, .a, ). We begin with the following lemma which describes the structure of the magic

11° 7 22

squares in M _(k,r) and it will be useful for proving our main theorem.
Lemma 1. Let A =[a ] . beamagicsquarein m_ (k.r). Then either

(a)a =a _=a_,o0r

13 22 31

(b) a _,a ,and a_ are all different, in this case, either

13 2

(b1) a. <a_<a_anda_=a_ +1 a_ =a_— I forsome positive integer /, or
1 22 1 13 22 31 22

3 3

(b2) a._<a_<a_and a_=a _—Ia_ =a_+/ forsome positive integer /.
3 22 31 1 31 22

1 3 22

Proof. Assume that (b) does not hold. Thus, there are at least two numbers from the set {a”,a a } which are

22’ 731

equal. We suppose that a, =a_ = p . Then, we can compute a, =r—a —a ,a, =r—a —p=a,_ and

12 3

a =a =a_ .Thus,
23

32 11

a r—a —op p

11 11

r—a,Tay, P a

I 1
| |
A= | |-
. S

31 11 11

Now, we consider the sum in the third row, we have a,+ta +0—a —p)=r, which implies a, =np.

1

Therefore, a_=a_=a_. In a similar way, we can prove that if a_ =a_ora_=a ,thena_=a_ =a
13 22 31 13 31 2 31 1

, . . o
Hence, (a) holds.

In particular, if a ,a_ and a_ are all different, then we consider the following cases:

Case 1: a, <a, ,saya =a, +/ forsome positive integer /. We first calculate a _ = r—a —a

1

followed by calculating a_ ,a, ,a ,a  and a _ respectively. Then we get the magic square as follows:

31 32
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:— a, r—aM—aH—I 322+/ —:
A=|r—aﬂ—322+/ a, aﬂ—l |, (2)
L a, —|I aﬁ+/ r—aﬂ—azzJ
that is, (b1) holds.
Case2:a <a _,saya =a, — forsome positive integer /. We use a similar argumentas in Case 1,

our magic square can be written as follows:

|— a r—a _ —a__+1 a_—1 _]
| 11 11 22 22 |
A=|r—a —a — a a + 1/ | (3)
11 22 22 11
L a_ + 1 a —| r—a, _ —a J
22 11 11 22
Then, our magic square satisfies (b2), which completes the proof. U

In view of Lemma 1, when the anti-diagonal entries are equal, the magic square in (1) can be clearly seen

as

a r—a —p p

11 11

: (4)

r_aﬁ_p p a‘H

[ 1
| |
A= |
[ e e

where its reflection over the main diagonal is itself. On the other hand, when the entries on the anti-diagonal are all
different, we get the magic squares represented in (2) and (3), where they are the reflection of each other over the

main diagonal.

Results

Before proving the main result, we observe that if A = la, 1, is @ magic square in M_(k.r), then a, =k

3

for all j,j by its definition. Thus, each entries can be written as k + x for some non-negative integer x .
Consequently, if k + x,k + y and k + z are entries in the same row (column, or the main diagonal) of the magic
square, then we have (k + x)+ (k + y)+ (k + z) = r which implies x+ y + z=r—3k and, thus, 0 < x <r—3k.
Therefore, the magic squares in M _(«,r) can be constructed only when 0 < r — 3k .

In what follows, for any real number x , let | x | denote the largest integer less than or equal to x . We

n

n(n—+ 1)
also note that the summation of the first n natural numbers, i.e. 1+ 2+ 3+ ...+ n, is equal to Z = ———

2

i=1

Now, we are in the position to prove our main theorem.
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Theorem 1. Let k and r be nonnegative integers. Then the number of magic squares in m_(k,r) is

s
3

I

|
L
) s(s+ 1) )
(s+ 1) ——+Z((s—3l+1) + (s =31+ 1)
2

=1

where s =r — 3k .

Proof.  Recall that, once we know the triple (a_ ,a

22" 731

a_ ), we can determine each magic square in M _(k,r), SO
our aim is to count the number of ways to choose these triples. From Lemma 1, we first count all magic squares in
(4) which all entries in their anti-diagonal are all equal. We write p = k+ x and a =k+y for some

0< x,y <r—3k,then (4) can be written as

|[_ k+ y r—x—y—2k k + x —I
A=|r—x—y=2k k + x k+y | - (5)
L k + x k+y r—x—y—ZkJ

Consider a_ in (5), we have that r—x —y —2k >k which implies that 0 <y <r—3k—x . So,
a, =k+y can be chosen in r—3k—x+1 ways and this number depends on x , where 0 < x <r—3k .

Therefore, the number of ways to choose the triples (a,.a,.a,)=(k+yk+ xk+ x) is

227 731

r—=3k r—=3k r—=38k

Dr=sk=x+1= (r=3k+ 1= x

x=0 x=0 x=0

(r—3k)(r—3k + 1)

=(r—3k+1 —
2
This shows the number of magic squares for which all entries in the anti-diagonal are the same.

Next, we count all magic squares in the form of (2), ie., a_ < a, <a, . We write a =k + ¢ and

31

a, = k+uforsome o < t,u<r—3k.Then (2) can be written as

2

{7 k +t r—t—u—2k—1 k+u+1 —l
A=|r—t—u=—2k+]I k+ u k+t—=1 | (7)
{ k+u—1 k+t+ 1 r—t—u—2kJ

Now, all entries of the magic square in (7) must be greater than or equal to k by the definition. But, in fact, we only

need three following conditions:
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a,=r—t—u—2k—12k, (8)
a, =k+i—12k, (9)
a,=k+tu—1Zk (10)

3

This is because the conditions a, > kand a_ > « are implied by (9) (as a_, > a > a, >« ). Similarly, a >«
and a_ > k areimplied by (10), and a_ > k , a_ > k areimplied by (8). Thus, we can only focus on the conditions
(8), (9) and (10). Now, conditions (8) and (10) imply

ISu<r—3k—t—1, (11)
which means that there are (r— 3k —t—1)—/+1=r—3k—t—2/+1 ways to choose v and this number
depends on the two variables t and /. By (9) and (11), we get that

I1<t<r—3k—2l (12)
Next, combine (8),(9) and (10) together, we have r — 3/ > 3k which implies

| 1= |

'_ ) J (13)

From (11),(12) and (13), the number of ways to choose all triples (a, ,a

1< <

,a,)=(k+t,k+uk+u—1 which

generate all magic squares of the form (7) is

| r=3k |

Jr—sk—zl

L
Z z (r—3k—t—21+1), (14)

where the inner summation in (14) can be expressed as

(r=3k—I1—2[+ D+ (r—3k—(+N—21+ D+ (r—3k—(+2)—2/+ D)+ ...
+(r—3k—(r—3k—2)—2/+1)
=(r—3k—3/+ 1)+ (r—3k—=3N+(r—3k—3/I—1+..+1

(r—=3k =3I+ 1)((r—=3k—3I+1)+1)

2

(r—3k—=31+1 +(r—3k—3/+1)

2

Hence, from (14), the number of magic squares of type (2) is

2

| r=3k |
L (r—3k—31+1) +(r—3k—3+1)
> : (15)

2
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Finally, as discussed after Lemma 1, all the magic squares of type (3), i.e., a <a, <a , are the

reflection of all the magic squares of type (2), so they both have the same number of magic squares as shown in

(15). By combining the results from (6) and (15) and take s = r — 3k , we obtain that

s \

. s(s+1) L) ey v s —ait
IM (k)= (s+1) ———+2- Z
2 . 2
‘ (16)
) s(s+ 1) 3
=(s+1) — +§:s—w+1 + (s —3/+ 1),
which completes the proof. U

Example 1. Let k = 5,r =17 .Then, s = 2 and L J = 0 . Hence, the summation in the formula (16) is equal to 0,
3

which means that there is no magic square in M (5,17) for which a, <a,<a, Ora, <a <a

31 "
Therefore, |m_(5,17)|=3" — ——=56.

S
Example 2. Let k = 2,r =13.Then, s =7 and |L_J| = 2 . Therefore,

3

2 7-8 2 2
|M3(2,13)\=8 - —+ (5 +5)+(2 +2)=36+((30+6)=72.
2

Discussion

In this section, we present a simple algorithm to construct all magic squares in M _(k,r) . Refer to the proof
of Theorem 1, forming all magic squares in M _(k,r) can be done using the following steps:
Step (i) Calculate all values x from 0< x < r— 3k, and for each such x , calculate all values y from
0L y<r—3k—x.
Step (ii) Write all triples (a, ,a_,a )= (k + y,k + x,k + x) from x and y in Step (i), then, all magic squares
whose anti-diagonal entries are equal can be formed by these triples.

| r—3k |

Step (iii) Calculate all values | from 1</ < L—J , and for each such !, calculate all values t from
ISt<r—3k—2].

Step (iv) Find all values v satisfying /1< v <r—3k —t—1 from /¢t in Step (iii).
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Step (v) Write all triples (a, ,a_.,a )= (k + t,k + u.k +u —1) from /,+ and v from Step (iii) and Step (iv), then we
can use these triples to generate all magic squares in which a, < a, <a .
Step (vi) All magic squaresinwhich a < a < a  can be created from the reflection of all those magic squares

in Step (v) to the main diagonal, where their generating triples (a,,.a, a,) are of the form (k + t,k + u,k + u + /).

Example 3. From Example 1, we compute IM,(5,17)| =6 .Table 1. below shows all 6 triples

(a,,a,.a,)=(k+ yk+ xk+ x) which generate all magic squares in M_(5,17) .

172

Table 1 all generating triples for magic squares in M _(5,17) .

0<x<r—3k | 0 y<r—3k—x (k+ y.k+ x,k+ x)
0 (5,5,5)
0 1 (6.5,5)
2 (7,5,5)
1 0 (5.6.,6)
1 (6,6,6)
2 0 (6,7.7)

Example 4. From Example 2, we compute IM (2,13)| =72 . The Table 2 below shows all 36 triples which

generate all magic squares in M (2,13) forwhich a, = a, =a_  andTable 3 shows all 36 triples which
generate all magic squares in v _(2,13) forwhich a_ <a <a (see column 4) and a, <a, <a_ (see column
5).

Table 2 36 generating triples for magic squares in M _(2,13) whicha =a = a

22 31"

0<x<r—3k | 0 y<r—3k—x (k+ y.k+ x,k+ x)
0 (2,2,2)
1 (3,2,2)
2 (4,2,2)
0 3 (5,2,2)
4 (6,2,2)
5 (7,2,2)
6 (8,2,2)
7 (9,2,2)
0 (2,3,3)
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0Sx<r—3k |0 y<r—3k—x (k + y.k+ x,k+ x)
1 (3,3,3)
2 (4,3,3)
1 3 (5,3,3)
4 (6,3,3)
5 (7,3,3)
6 (8,3,3)
0 (2,4,4)
1 (3,4,4)
2 (4,4,4)
2 3 (5,4,4)
4 (6,4,4)
5 (7,4,4)
0 (2,5,5)
1 (3,5,5)
3 2 (4,5,5)
3 (5,5,5)
4 (6,5,5)
0 (2,6,6)
4 1 (3,6,6)
2 (4,6,6)
3 (5,6,6)
0 (2,7,7)
5 1 (3,7,7)
2 (4,7,7)
6 0 (2,8,8)
1 (3,8,8)
7 0 (29,9

Next, we show all generating triples for magic squares in M _(2,13) which a _,a_.a_  are all distinct.
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Table 3 36 generating triples for magic squares in m_(2,13) which a_ <a < a  (see column 4)and

a, <a, <a, (seecolumnb).
1< lL_Jl i<iroskma | 1Sugomsk—tmt | Gtktuktumn| Gkttt

1 (3,3,2) (3,3,4)

2 (3,4,3) (3,4,5)

1 3 (3,5,4) (3,5,6)

4 (3,6,5) (3,6,7)

5 (3,7.,6) (3,7.8)

1 1 (4,3,2) (4,3,4)

2 2 (4,4,3) (4,4,5)

3 (4,5,4) (4,5,6)

4 (4,6,5) (4,6,7)

1 (5.3,2) (5,3,4)

3 2 (5,4,3) (5,4,5)

3 (5,5,4) (5,5.,6)

4 1 (6,3,2) (6,3,4)

2 (6,4,3) (6,4,5)

5 1 (7,3,2) (7,3,4)

2 2 (4,4,2) (4,4.,6)

2 3 (4,5,3) (4,5,7)

3 2 (5,4,2) (5,4,6)

For example, a magic square in M _(2,13) generated by (5,4,2) can be formed as follows:

5 2 6—|

Lo ]

Figure 2 constructing a magic square in from (5,4,2).

_)

s
|
|
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Conclusions

In this paper, a class of 3x3 magic squares denoted by m_(k,r) has been examined, a formula to count
the number of all magic squares in m_(k,r) has been presented as well as an algorithm for constructing such
magic squares. We have shown that such number equal to the number of ways to choose the possible number to

fill in three entries a_,a__,a_ in the magic square.
1M1 22 31
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