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Abstract
In this paper, we propose a symmetric-key image encryption scheme using an infinite simple continued
fraction derived from a quartic irrational number of the form Va + Vb, where a,b € N, as the secret key. Efficiency
of encryption is measured in terms of correlation coefficients, deviation from ideality, the avalanche effect, and peak
signal-to-noise ratios. After encrypting five standard test images, namely, Airplane, Baboon, Fruits, Lena, and
Peppers, our scheme is compared with the schemes of Hamad et al. (2013) and Pareek (2012). The results show
that our scheme is more effective than the scheme of Pareek (2012). Moreover, except for the correlation

coefficients, our scheme is slightly more effective than the scheme of Hamad et al. (2013).

Keywords : image encryption, RGB image, continued fraction, quartic irrational number

Introduction

Image security is an application layer technology to guard the transmitted data against unwanted
disclosure as well as to protect the data from modification while in transit. To achieve higher security to encrypted
images, several image encryption schemes have been proposed based on various mechanisms. Those
mechanisms may be classified into three major categories: position permutation, value transformation, and the
combination form (Pareek, 2012).

Nowadays, there are a number of encryption schemes for RGB images. Liu et al. (2011) proposed an
encryption scheme which uses Arnold transform and color- blend operation in discrete cosine transform domains.
The Arnold transform scrambles the pixel sequence of a color image for several subimages at local area. The data
of random angle is the main key of encryption, while the parameters of Arnold transform are the additional key for
increasing security. Later, Pareek (2012) proposed an encryption scheme which uses a 144-bit secret key and
utilizes both pixel substitution and pixel permutation, in which pixels in each subimage are reshuffled by using a
key- dependent magic square matrix. His proposed scheme is sensitive to the secret key and requires less
computation. Moreover, Hamad et al. (2013) modified the Playfair cipher for encrypting digital images. Rather than
using the classical 5 X 5 key matrix, their proposed scheme relies on 16 X 16 key matrix for a better alignment with
image pixel data and adopts an exclusive-or procedure to provide security to encrypted images.

A continued fraction is a representation of a real number as a sequence of integers, which can be obtained
algorithmically. In particular, it is well known that every irrational number can be rewritten as an infinite continue
fraction (Burton, 2007). This, therefore, can provide a convenient way to disguise digital data and reduces the need
of memory to store all cipher keys. Ozdemir and Yaprakdal (2010) introduced a cipher whose encryption algorithm

relies on a periodic continued fraction although their cipher is more suitable for text encryption than image
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encryption. Thus, in this paper, we aim to develop a symmetric-key encryption scheme for RGB images using
continued fractions associated to quartic irrational numbers. Furthermore, efficiency of our scheme will be
compared with that of the schemes of Hamad et al. (2013) and Pareek (2012) in terms of correlation coefficients,

deviation from ideality, the avalanche effect, and peak signal-to-noise ratios (PSNR).

Methods

1. Aperiodic continued fractions and quartic irrational numbers

Before we proceed to the development of our image encryption scheme, we shall first give a brief
explanation on aperiodic continued fractions and quartic irrational numbers. An infinite simple continued fraction is

an expression of the form

az +
as +<-

where a, € Z and a; € N for all positive integers i. The compact notation [ay; a4, @5, ... ] is normally used to denote
such a fraction (Burton, 2007). Every irrational number x can be expressed uniquely as an infinite simple continued

fraction [ay; aq, ay,...], where a,, = |x, ]| foralln = 0 and

X ifn=0,
Xy, =

ifn > 0.
Xn-1 ~ Qn-1
A quadratic irrational number is an irrational number which is a root of an irreducible quadratic polynomial
with integer coefficients (Havil, 2012). It is well known that the infinite simple continued fraction of a real number x
is periodic if and only if x is a quadratic irrational number (Burton, 2007). Similarly, a quartic irrational number is an
irrational number being a root of an irreducible quartic polynomial with integer coefficients.
From the above definitions, the irrational numbers v/2 and V3 are therefore quadratic irrational numbers,
for they are roots of the polynomial x? — 2 and x% — 3, respectively. Let x, = v/2 + /3. One can verify that x, is a
root of the polynomial x* — 10x? + 1 = 0. Note that x, must be irrational since a rational root of the polynomial
x* —10x? + 1 would be 1 or —1 if it existed (Young, 2010). It remains to show that the polynomial x* — 10x2 + 1

is irreducible. Clearly, the polynomial has no linear factor since 1 and —1 are not its roots. Suppose that
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x*=10x2+1=(x*4+ax +b)(x*+cx + d) 3)
for some a, b,c,d € Z. Equating the coefficients, we have
a+c=0, ac + b + d = —10, ad + bc = 0, bd = 1. (4)
If b = d = 1, then we finally have a® = 12, which is impossible since a € Z. A similarly contradiction is also
obtained ifb = d = —1. Thus, the polynomial x* —10x? + 1 is irreducible, so X is a quartic irrational number.

Moreover, it follows that the infinite simple continued fraction of x4 is aperiodic.

2. Research methodology

Our research methodology for developing a new encryption scheme for RGB images consists of the
following four main parts:

1. Develop an encryption algorithm which uses a quartic irrational number as the secret key.

2. Derive the decryption algorithm corresponding to our encryption algorithm.

3. Measure time consumption and the efficiency of our scheme in terms of correlation coefficients, deviation
from ideality, the avalanche effect, and PSNR, using the five test images of size 512 x 512 as shown in Figure 1.
All the three components of each test image are evaluated using all the four metrics.

4. Compare time consumption and the efficiency of our scheme to that of the schemes of Hamad et al.

(2013) and Pareek (2012).

=

Figure 1 The testimages Airplane, Baboon, Fruits, Lena, and Peppers (University of Wisconsin-Madison, 2012).

2.1. The encryption algorithm

Our encryption algorithm consists of the following steps:

1. A sender and a recipient choose two positive integers a, b such that Va++bis a quartic irrational
number as their secret keys.

2. The sender then splits the red component of the plainimage into a number of sub-plainimages of size
4 X 4,say, P;,P,,..., Py.

3.Fori = 1,2,...,N, repeat the following:
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(a) Construct a 4 X 4 matrix K; which is invertible modulo 256 from the infinite simple continued
fraction expansion of va + Vb. For K, , we form a 4 X 4 matrix rowwise using the first 16 partial quotients of va +
Vb. If the matrix is still singular modulo 256, then we discard the first partial quotient, shift the remaining partial
quotients, and insert a new partial quotient. Continue this process until the matrix is invertible modulo 256. After
that, all matrices K; are formed in a similar way for all i > 2.
(b) Let C; = P;K? mod 256, where P; is the i'"" sub-plainimage.
4. Arrange all matrices C; to form the red component of the cipherimage.
5. The green and blue components of the cipherimage can be obtained in a similar way by applying steps
2-4 to the corresponding components of the plainimage.

2.2. The decryption algorithm

Corresponding to our encryption algorithm, our decryption algorithm consists of the following steps:
1. The recipient splits the red component of the cipherimage into N sub-cipherimages of size 4 X 4.
2.Fori = 1,2,...,N, repeat the following:
(a) Construct K; as in the encryption algorithm.
(b) Calculate P; = Ci(KiS)_l mod 256.
3. Arrange all matrices P; to form the red component of the plainimage.
4. The green and blue components of the plainimage can be obtained in a similar way by applying steps
1-3 to the corresponding component of the cipherimage.

3. Encryption evaluation metrics

In this paper, the following four metrics are used for comparing the efficiency of our scheme with that of
the schemes of Hamad et al. (2013) and Pareek (2012); see Abd EI-Samie et al. (2014) for more details.

3.1. Correlation coefficients

Let X = [xi]-] be an m X n matrix. Let E(X) be the average of all entries of X and define

D(X) _mnizn: xl] —E(X) (6)

i=1 j=1

Moreover, for any m X n matrices X = [xij] andY = [yij], we define

cov(X,Y) Z%ZZ(XU_E(X)) ()’ij—E(Y))- (6)

i=1 j=1
According to Goldberg (1960), the correlation coefficient between entries at the same indices in X and Y, denoted

by ryy, is defined by
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_covi® 1) if bCOD(Y) =0
ey = 4/DX)D(Y) ’ (7)

0 if pCcop() =o.

It can be proved that —1 < ryy < 1 (Goldberg, 1960). The correlation 1 indicates a perfect positive linear
association, whereas the correlation —1 indicates a perfect negative linear association (Peat et al., 2008). For a
plainimage P with the corresponding cipherimage C of the same size, the value of rp closer to zero indicates better
quality of the encryption scheme (Abd El-Samie et al., 2014).

3.2. Histogram uniformity and deviation from ideality

Abd El-Samie et al. (2014) suggests that an image encryption scheme should yield the cipherimage whose
histogram is totally different from that of the plainimage and reveals a uniform distribution. To measure such

uniformity numerically, one can use the deviation from ideality, which is defined by

255

D =%Z|hi(c)—% (8)

i=0

where h;(C) is the number of occurrences of pixels with intensity i in the cipherimage C of size m X n. Clearly, the
lower value of D indicates better encryption quality of the scheme.
3.3. PSNR

In addition to visual inspection, one can measure the difference between a plainimage P = [p;;] and its
cipherimage C = [c;;] of size m X n using the peak signal-to-noise ratio (PSNR), which is normally expressed in

terms of decibel unit (Liu et al., 2011). The PSNR is defined by

255%mn
PSNR = 10log,,

DIDN TR py)’

An image encryption scheme should maximize the difference between the plainimage and the cipherimage; this is
indicated by the smaller PSNR.

3.4. The avalanche effect

Let P be a plainimage and let P’ be a modified plainimage obtained by making a single bit change to P.

Let C and C’ be the cipherimage associated to P and P’, respectively. The avalanche effect is defined as the
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percentage of different bits between € and C'. According to Abd El-Samie et al. (2014), an encryption algorithm is

considered to possess good diffusion if C and €’ differ from each other in half of their bits.

Results
In our experiment, all test images are encrypted and their corresponding cipherimages are decrypted
using the schemes of Hamad et al. (2013), Pareek (2012), and our scheme. We use 10 as the secret key for the

scheme of Hamad et al. (2013), the vector
k = [119,40,161,213,216,63,224,115,130,81,118, 35,175,190, 131, 32,130, 81] (10)
as the secret key for the scheme of Pareek (2012), and a = 2, b = 3 as the secret keys for our scheme. Recall that

Va ++/b is a quartic irrational number.

1. Encrypted and decrypted test images

Applying the schemes of Hamad et al. (2013), Pareek (2012), and our scheme to all five test images (left),

the corresponding encrypted images (center) and decrypted images (right) are as shown in Figures 2-4.

725



M3ATINEANERTYING TN 25 (AUUT 2) WOHNIAN - BIIAN W.A. 2563

BURAPHA SCIENCE JOURNAL Volume 25 (No.2) May —August 2020 UNAINAAL

Figure 2 Airplane, Baboon, Fruits, Lena, and Peppers images after applying the scheme of Hamad et al. (2013).

Figure 3 Airplane, Baboon, Fruits, Lena, and Peppers images after applying the scheme of Pareek (2012).
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Figure 4 Airplane, Baboon, Fruits, Lena, and Peppers images after applying our scheme.

2. Elapsed time for encryption and decryption

In our experiment, each test image is timed thrice and the average time is calculated for both encryption
and decryption. The average time consumption for encrypting and decrypting each test image using the schemes
of Hamad et al. (2013), Pareek (2012), and our scheme is shown in Table 1. Our computation is done on a 64-bit
computer with 2.20 GHz microprocessor and 8 GB random access memory.

Table 1 Average time consumption for encryption and decryption.

Average time consumption after applying each scheme (second)

Image Hamad et al. (2013) Pareek (2012) Our scheme
Encryption Decryption Encryption Decryption Encryption Decryption
Airplane 337.80 329.45 12670.70 12995.03 165.23 165.93
Baboon 329.82 326.13 12691.49 12640.31 178.51 178.65
Fruits 348.70 353.29 12387.89 12511.17 162.15 162.00
Lena 372.23 408.04 12329.16 14548.93 162.32 162.43
Peppers 324.36 320.50 12305.00 12249.68 166.79 166.67
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3. Correlation between original and encrypted test images

The correlation coefficients between the original test images and their associated encrypted versions

obtained from the schemes of Hamad et al. (2013), Pareek (2012), and our scheme are shown in Table 2.

Table 2 Correlation coefficients for each color component of the test images.

Correlation coefficients for each scheme

Image Color component
Hamad et al. (2013) Pareek (2012) QOur scheme

Red 0.000008 0.002602 0.000689
Airplane Green -0.000676 0.001874 -0.002629
Blue -0.001857 0.000258 0.001665
Red 0.002721 -0.002271 -0.000507
Baboon Green 0.002724 0.007182 0.000251
Blue -0.000581 -0.003501 -0.001747
Red 0.000614 -0.033039 0.002441
Fruits Green 0.002633 -0.014993 -0.001519
Blue 0.001529 -0.017250 -0.001257
Red 0.001720 0.011027 0.001309
Lena Green 0.002564 0.001478 -0.004718
Blue 0.000976 -0.002466 0.000008
Red 0.000530 0.003246 0.004026
Peppers Green 0.000094 0.001132 0.003660
Blue 0.001373 -0.002291 -0.001422

4. Deviation from ideality

The deviation from ideality of each encrypted image is calculated per component as shown in Table 3
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Table 3 Deviation from ideality for each color component of the test images.

Deviation from ideality for each encrypted method

Image Color component
Hamad et al. (2013) Pareek (2012) Our scheme

Red 0.024590 0.200020 0.024750
Airplane Green 0.023727 0.060425 0.025391
Blue 0.024887 0.037704 0.027664
Red 0.026085 0.103020 0.025925
Baboon Green 0.023842 0.044930 0.027382
Blue 0.025742 0.031227 0.025162
Red 0.024979 0.185608 0.025017
Fruits Green 0.024101 0.057060 0.022896
Blue 0.025063 0.048294 0.025124
Red 0.026321 0.128967 0.024635
Lena Green 0.025551 0.093933 0.023689
Blue 0.024429 0.145180 0.025200
Red 0.025330 0.151375 0.024971
Peppers Green 0.023697 0.038773 0.024078
Blue 0.022957 0.082321 0.024147

Moreover, the histograms of each intensity (the x-axis) against the number of pixels having that intensity

(the y-axis) are obtained for each encrypted test image as shown in Figures 5-9.

The red companent of the cipherimage of Airplans (Playfair) The red companent of the cipherimage of Airplans (Bit144) The red companent of the cipheimage of Airplane (Mined)

100 15 201 250

o 0 0
lue component of the cipherimage of Alrplane (Mined)

Figure 5 Histograms of encrypted Airplane by Hamad et al. (2013), Pareek (2012), and our scheme.
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The red companent of the cipheiimage of Baboon (Playfaii)
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0
0 50 100 150 200 250 300
"The grasn companant of the cipherimage of Baboon (Playfaif)
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)
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The red component of the cipherimage of Babaan (Bit144)

The red component of the cipherimage of Baboon (Mine)
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Figure 6 Histogram of encrypted Baboon by Hamad et al. (2013), Pareek (2012), and our scheme.

The red companent of the cipherimage of Fruits (Flayfai)
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Figure 7 Histogram of encrypted Fruits by Hamad et al. (2013), Pareek (2012), and our scheme.
The green compenent of the cipheiimage of Lena (Playfain) The green compenent of the cipheiimage of Lena (Biti44) The green compenent of the cipherimage of Lena (Mined)

Figure 8 Histogram of encrypted Lena by Hamad et al. (2013), Pareek (2012), and our scheme.
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The red companent of the cipherimage of Peppers (Playlaii) The red companent of the cipheiimage of Peppers (Bit1 44) The red companent of the cipherimage of Peppers (Mined)
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Figure 9 Histogram of encrypted Peppers by Hamad et al. (2013), Pareek (2012), and our scheme.

5. The PSNR between original and encrypted test images

The PSNR between each test image and its associated encrypted version is shown in Table 4.

Table 4 The PSNR for each color component of the test images.

The PSNR for each scheme

Image Color component
Hamad et al. (2013) Pareek (2012) Our scheme

Red 8.149508 8.602409 8.163664
Airplane Green 7.829343 7.931056 7.842437
Blue 7.933073 7.989850 7.963416
Red 8.769794 8.551803 8.769361
Baboon Green 9.247017 9.269383 9.241378
Blue 8.366375 8.349004 8.366512
Red 7.655114 7.880764 7.673852
Fruits Green 8.163299 8.115256 8.155233
Blue 8.550865 8.477424 8.5637750
Red 7.873181 8.117700 7.856224
Lena Green 8.561918 8.442597 8.544412
Blue 9.626719 9.426465 9.604580
Red 9.106543 8.981876 9.121116
Peppers Green 7.628512 7.623320 7.641187
Blue 7.666607 7.535952 7.659207
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6. Percentage of the avalanche effect

The avalanche effect is calculated for three random bit changes and the average is shown in Table 5.

Table 5 The average avalanche effect towards the test images.

The average avalanche effect for each scheme (%)

Image
Hamad et al. (2013) Pareek (2012) Our scheme
Airplane 0.000148 19.291 0.000244
Baboon 0.000095 19.500 0.000238
Fruits 0.000148 19.500 0.000297
Lena 0.000159 19.412 0.000244
Peppers 0.000133 19.509 0.000244

Discussion
From Figure 4, it is evident that our proposed image encryption scheme can be reversed to recover the

original five test images. Recall our encryption and decryption algorithms. One can easily verify that
5\71 5 5\71 5(5) 1
(k)™ = (PkS)(KS) " = P (KF(KS) ™) = Pd = P, mod 256 (11)

foralli =1,2,...,N, where I is the 4 X 4 identity matrix and N is the number of sub-plainimages of size 4 X 4.

Based on visual inspection, one can see from Figures 2 and 4 that the scheme of Hamad et al. (2013) and
our scheme can provide visually unrecognizable encrypted images. Unfortunately, one can see from Figure 3 that
the encrypted images obtained from the scheme of Pareek (2012) are partially recognizable, particularly for the test
images Fruits, Lena, and Peppers. Thus, further analysis is required in order to compare the efficiency of our scheme
with that of the scheme of Hamad et al. (2013).

In terms of time consumption, one can see from Table 1 that the average encryption time using the
schemes of Hamad et al. (2013), Pareek (2012), and our scheme is between 324.36-372.23, 12305.00-12691.49,
and 162.15-178.51 seconds, respectively. The average decryption time using the schemes of Hamad et al. (2013),
Pareek (2012), and our scheme is between 320.50-408.04, 12249.68-14548.93, and 162.00-178.65 seconds,
respectively. Therefore, our scheme clearly uses the least amount of time for encryption and decryption.

For the correlation coefficients, one can see from Table 2 that the scheme of Hamad et al. (2013) provides
the correlation coefficients whose magnitude ranges between 0.000008-0.002724, while the magnitude of the

correlation coefficients obtained from the scheme of Pareek (2012) and our scheme ranges between 0.000258-
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0.033039 and 0.000008-0.004718, respectively. Thus, our scheme yields the correlation coefficients which are
closer to zero than those provided by the scheme of Pareek (2012). However, the range of magnitude of our
correlation coefficients is slightly wider than that obtained from the scheme of Hamad et al. (2013).

From Figures 5-9, one can easily see that, unlike the scheme of Pareek (2012), our scheme and the scheme
of Hamad et al. (2013) yield a uniformly-distributed histogram of intensities for all encrypted test images. In addition,
one can see from Table 3 that the deviation from ideality of all encrypted test images obtained from the schemes of
Hamad et al. (2013), Pareek (2012), and our scheme ranges between 0.022957-0.026321, 0.031227-0.200020,
and 0.022896-0.027664, respectively. Hence, our scheme provides the range of deviation from ideality which is
close to zero and almost similar to that provided by the scheme of Hamad et al. (2013).

In terms of the PSNR, one can see from Table 4 that the ranges of PSNR obtained from the schemes of
Hamad et al. (2013), Pareek (2012), and our scheme are between 7.628512-9.626719, 7.535952-9.426465, and
7.641187-9.604580, respectively. Therefore, the scheme of Pareek (2012) gives the smallest PSNR, whereas our
scheme provides a range of the PSNR which lies within the one provided by the scheme of Hamad et al. (2013).

Finally, from Table 5, one can see that the average avalanche effect obtained from the schemes of Hamad
et al. (2013), Pareek (2012), and our scheme ranges between 0.000095%-0.000159%, 19.291%-19.509%, and
0.000238%-0.000297%, respectively. Therefore, it is obvious that the scheme of Pareek (2012) yields the highest
average percentage of the avalanche effect, whereas the percentage of the avalanche effect provided by our

scheme is approximately twice the one provided by the scheme of Hamad et al. (2013).

Conclusions

The scheme of Hamad et al. (2013) relies heavily on encrypting each color component of the plainimage
using a modified version of the Playfair cipher with 16 X 16 table, whose entries are randomly generated by a given
seed. After that, the exclusive disjunction (exclusive-or) of the scrambled image and the generated random mask
of the size is then computed. In contrast, the scheme of Pareek (2012) uses a secret key of 144 bits and divides the
plainimage into a number of blocks of the same length. Each block is then passed through substitution process,
before the permutation process is applied for five iterations. Although both schemes vyield high-quality
cipherimages, one of their main disadvantages is the time consumption during encryption and decryption.

In this paper, we develop an image encryption scheme which uses an infinite simple continued fraction of
a quartic irrational number as the secret key. The efficiency of our scheme is measured in terms of correlation
coefficients, deviation from ideality, the avalanche effect, and PSNR. Using the testimages Airplane, Baboon, Fruits,
Lena, and Peppers, our scheme is compared with the ones of Hamad et al. (2013) and Pareek (2012). In overall,

we find that our image encryption scheme requires the least amount of computational time and is more effective in
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providing visually-unrecognizable encrypted images than the scheme of Pareek (2012). Finally, except for the

correlation coefficients, our scheme is also slightly more effective than the scheme of Hamad et al. (2013).

Acknowledgements
The authors would like to thank the Department of Mathematics, Faculty of Science, Khon Kaen University

for its support towards this research.

References

Abd El-Samie, F.E., Ahmed, H.E.H., Elashry, I.F., Shahieen, M.H., Faragallah, O.S., El-Rabaie, E.-S.M., & Alshebeili,
S.A. (2014). Image Encryption: A Communication Perspective. Boca Raton: CRC Press.

Burton, D.M. (2007). Elementary Number Theory. (6" ed.). New York: McGraw-Hill.

Goldberg, S. (1960). Probability: An Introduction. Englewood Cliffs: Prentice-Hall.

Hamad, S., Khalifa, A., Elhadad, A., & Rida, S.Z. (2013). A modified Playfair cipher for encrypting digital images.
Journal of Communication and Computer Engineering, 3(2), 1-9.

Havil, J. (2012). The Irrationals: A Story of the Numbers You Can’t Count on. Princeton: Princeton University Press.

Liu, Z., Xu, L., Liu, T., Chen, H., Li, P., Lin, C., Liu, S. (2011). Color image encryption by using Arnold transform and
color-blend operation in discrete cosine transform domains. Optics Communications, 284, 123-128.

Ozdemir, A.S., & Yaprakdal, A.B. (2010). Using the relationship between periodic continued fraction and quadratic
irrationals: ASAB-II cipher. Istanbul Aydin Universitesi Dergisi, 2, 131-149.

Pareek, N.K. (2012). Design and analysis of a novel digital image encryption scheme. International Journal of
Network Security & Its Applications, 4(2), 95-108.

Peat, J., Barton, B., & Elliott, E. (2008). Statistics Workbook for Evidence-based Health Care. Chichester: Wiley.

University of Wisconsin-Madison. (2012). Public-domain Test Images for Homework and Projects. Retrieved June
11, 2018, from http://homepages.cae.wisc.edu/~ece533/images/index.html

Young, C.Y. (2010). Precalculus. Hoboken: Wiley.

734



