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Abstract

In this paper, the construction of control Lyapunov functions (CLFs) for nonlinear systems is reviewed. A CLF
approach is restated to solve the infinite-time optimal control problem. The Hamilton-Jacobi-Bellman (HJB) partial
differential equation is illustrated and suboptimal solutions can be found by the use of CLFs. Further, the application
of the generalization of Sontag’s formula to design an optimal feedback stabilizing controller is briefly summarized.
The construction of CLFs for several special classes of nonlinear systems including feedback linearization and inte-
grator backstepping is explained with simplified expressions of developed theories. Examples are also presented to

illustrate Lyapunov-based controller design techniques using a CLF.
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Introduction

Lyapunov functions are used to show a sufficient
condition for proving the stability of a dynamical system
(for a reference see (Khalil, 1992 ; Hahn, 1967 ; Rouche
et al., 1977)). This energy-like function must always be
a positive-definite function of the state, and it must be
decreasing along trajectories of the state. Unfortunately,
the Lyapunov functions prove stability for closed-loop
systems, where the control law is already known. To har-
ness the power of this theory for the purpose of control
synthesis, Lyapunov’s second method was extended to
dynamical systems with inputs by Artstein (Artstein, 1983)
and Sontag (Sontag, 1983) with the introduction of control
Lyapunov functions (CLFs). Similar to Lyapunov stability
theorem the existence of a CFL is also a necessary and
sufficient condition for the stabilizability of nonlinear
systems with controlinputs. For nonlinear optimal control
problem, it has shown that a standard dynamic program-
ming approach reduces the problem to the HIB partial
differential equation. In other word, to solve optimal
control problems is equivalent to solve the HJB equation.
However, it is very complicate to solve the HJB equation
for nonlinear dynamic systems. Hence suboptimal solu-
tions obtained by using the CLF concept are considered.
In contrast with traditional Lyapunov functions, a CLF can
be defined for a system with inputs without specifying a
particular feedback function. Sontag (Sontag, 1989) has
shown that, if a CLF is known for a nonlinear system, then
the CLF and the system equations can be used to find a
controller that makes the system asymptotically stable.
Freeman and Kokotovi (Freeman & Kokotovi, 1996) have
shown that every CLF solves the HJB equation associated
with a meaningful cost. In other words, if a CLF exists for a
nonlinear system, we can compute the resulting optimal
control law without solving the HJB equation.

Finding a CLF for a general nonlinear system is an
open problem. For several special classes of nonlinear
systems, CLFs can be founded. Feedback linearization

(Lin & Sontag,1991; Malisoff & Sontag, 1997) can be used

108

to construct a CLF when the system dynamics can be
transformed into a linear structure. Likewise, integra-
tor backstepping (Sepulchre et al., 1997; Krstic et al.,
1975; Krstic & Li, 1998) will generate a CLF whenever
the system can be put into a cascade structure. In this
paper we summarize the application of a CLF to design
an optimal feedback stabilizing controller and review
the construction of CLFs for special classes of nonlinear
systems. Furthermore, we give discussions of subsequent
researches involving CLFs that may be performed in the

future.

Problem Formation

Consider the following optimal control problem
min [[g(x) +u’ Jdr (1)
0
dx
== +
st = F @) +gou 2

where x(¢) € R" denotes the state, u(r) e R represents
the control and f(x) e R" is a sufficiently smooth func-
tion of the state vector x(f), and x(0) is the initial con-
dition of the process. g(x) is continuously differentia-
ble, symmetric positive definite and (f, q) is zero-detect-
able.

The aim is to determine the control signal u to
solve the system (2) and minimize the performance
index (1). Next the procedure to derive the HJB equa-
tion presented by Primbs and his co-researchers (Primbs
et al., 1999) is restated.

Using a standard dynamic programming argument,

the HJB equation for the above problem can be written

as
Vif =3V 88"V +4(x)=0 3)

where V' = v s s v . V" is the minimum cost
ox, ox,,

to go from the current state x(¢), i.e.,



V' (x(0) = in [lg(x(0) +u* (0)1dT (@)

If a continuously differentiable, positive solution to the
HJB equation (3) exists, then the optimal control input
is given by

u* :—%V;g(x) (5)
At this stage, the HJB equation (3) solves the optimal
control problem for every initial condition all at once.
Hence, it is a global approach in this sense and offers a
closed-loop feedback formula for the optimal controller.
However, the HJB equation is extremely difficult to solve
analytically. We alternatively seek a suboptimal solution.
Thus, the basic concepts of a CLF (Primbs et al., 1999) to

obtain a suboptimal solution are also given below.

Definition 1 (Primbs et al,, 1999): A continuously dif-
ferentiable positive definite function WV(x) is called a
Control Lyapunov Function (CLF) for system (2) if for
xeRY and x=0, V,g=0=V,f <0.
We assume that W(x) is a CLF for the system (2) and
V(x) possesses the same shape level curves as those
of the value function V*. This implies a relationship be-
tween the gradients of V* and V. In such a circumstance,
there exists a scalar function A(x) such that V* = A(x)V,
for every x. Thus the optimal controller (5) can also be
rewritten as
= —%Vx*g(X) = —%ng(x)- ©
In addition, substituting ¥*,= A(x)V, into the HJB equation
(3), Mx) can be determined by
1 20 oo Ty T ()
AV, f —Z(E(X)) V.88V +q(x)=0.
Solving (7) and taking only the positive square root,

yields

Vof 1V ) +qlVigs V1] ()

A(x)=2
V.gg'V!

Substituting (8) into (6), then the controller u* becomes

[ Vef 1V + a0V, 88"V YT
V.ge'v!

V.g#0

X °

0 , V

which is known as Sontag's formula (Sontag, 1989).
Note that u* is bounded when V,g g¢oes to zero. Under
this control input it can be found that
. (10)
V=V.(f()+g(xu)

Substituting u* into (10), we obtain

. (11
V==V /)2 + a0V, 88" VY.
Obviously, V <0 is ensured and one can conclude that

this controller yields global asymptotic stability.

Construction of CLFs for a linear system
In this section we review a method to construct
a CLF for a linear system
X=Ax+Bu (12)
where x e R" denotes the state, u € R represents the
control, AeR™" is a constant matrix and BeR" de-
notes a constant vector.
Freeman and Primbs (Freeman and Primbs, 1996)
showed that a CLF for the system (12) is
V=x"Px (13)
where P = P"> 0 is the unique solution of the Riccati
equation
PA+ATP+Q-PBB ' P=0 (14)
with any given Q= Q"> 0 and ¢(x) =x" Qx. It implies the
feedback
(15)
By the feedback above the closed-loop system be-

u=-B"Px

comes
i=(A-BB' P)x (16)
With (13), the time derivative of V'is
vV =x" (A" P+ PA-2PBB P)x (17)

We now show that the quadratic Lyapunov function (13)
is a CLF for the system (12). With the condition V.g=V.B

=0, one obtains
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BT Px=0, x#0 (18)
Substituting (18) into (17), we obtain
A" (ATP+PAX=V_f <0 (19)

Therefore, we obtain ¥V f<0 whenever V,g=0. Thus, the
quadratic Lyapunov function (13) is a CLF for the system
(12). After obtaining a CLF for the system (12) the Sontag's

formula can be used to design a stabilizing control law

T PAx +J(x" PAY)? +4(x" PB)*

- . x'PB#0
x PB

0 , x'PB=0.

(20)

For linear systems, the unique solution P results in
the optimal value function ¥ However, in general, this

relation does not hold for nonlinear systems.

Construction of CLFs for feedback linearizable

systems
In this section, we summarize a method to find
a CLF for feedback linearizable systems by using of the
linear transformation technique. Feedback linearization
is a significant method to nonlinear control design. The
main idea of this scheme is to find a state transformation
z=®(x) and an input transformation u =u(x, v) so that the
nonlinear system dynamics is transformed into equivalent
linear time-invariant systems. After obtaining the form
z=Az+ Bv, then linear control technique can be ap-
plied.
The most convenient structure for a static state
feedback control is of the form
u=a(x)+ pxy (21)
where v is the external reference input. In fact the com-
position of this control with a system of a form
x=f(x)+g(xu
y=h(x)

yields a closed-loop characterized by the similar struc-

(22)

ture
x = f(x)+ g(x)a(x)+ g(x) B(x)v
y = h(x).

(23)
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Consider a nonlinear system having relative degree
r=n, i.e. exactly equal to the dimension of the state
space. The change of coordinates required to construct

to normal form is given exactly by

@ (x) h(x)

0:(0)|_| L)

O(x) = (24)

,(x) Lj." h(x)
Note that the Lie derivative of A(x) with respect to fix)

Oh(x)
ox

notations are often used to simplify expressions

T
is denoted by th:{ } f(x). The following

involving iterated Lie derivatives,

T
AL, hx) AL h(x))
Lih= {g—x} fxyand Lsh {fT f(x).

No extra functions are needed to complete the
transformation. We obtain new coordinates as

z=¢,(x)=L;h(x), i=1,...n (25)

Letting z =[zl,zz,...,zn ", the system is now described

by equation
z=Az+ Bv, (26)
where
0 1 0 ... 0] 0]
00 0 0
A= Do s B= (27)
0 00 0
00 0 ... 0] |1
and
y=h(®@(2)). (28)

We refer to this as input-state linearization. We
are also interested in feedback laws that linearize input/
output maps while leaving the state equations partially
linearized. When a system is transformed to the form
(26), the method in Section 3, can be used to determine
a CLF.



Construction of CLFs by using the integrator

backstepping technique
In this section a CLF for a more general class of
nonlinear systems with the integrator backstepping tech-
nique is reviewed. Consider the system in control affine
form with an integrator at the input
i =F(x)+G(x)E
E=u

where xeR",£eR are the states, and ueR is the

(29)

control input. We want to design a feedback controller
to stabilize the origin (x=0, £ =0).

The system can be seen as the cascaded connec-
tion of two components. Suppose that the first compo-
nent can be stabilized by a feedback law & = a(x) with
a(0) = 0, so that the origin of

x=F(x)+G(x)a(x) (30)
is asymptotically stable.
Suppose that we know a CLF F(x) that satisfies
%
V=—-IFXx)+G <-W
- [F@+Gat] W 1)

where W(x) is a positive definite function. Adding and
subtracting G(x)a(x) on the right hand side of (30), we
obtain
%= [F(x)+ G(x)a(x)]+G)[é - a(x)]
E=u. (32)
Letting w = &€ - a(x) and substituting this into (32), we
obtain
x=[F(x)+G(x)ax)]+Gxw
O=u-—da. (33)
Note that w represents the difference between the input

& and the desired input a(x). The derivative of a can be

computed using
=22 [Fr+ Gl
ox

Taking v=u—¢ reduces the system to

=[F(x0) + G(na(0)]+ G(x)w

X
0=V

which is similar to the system from which we began,
except that now the first component is asymptotically
stable when the input is zero.

A Lyapunov function candidate can be chosen

as

V.(x) =V(x)+%a)2.

(36)
The first time derivative of V., is
Vv, = v [F(x) + G(x)a(x)]+ Y G+
X ox
(37)

< W)+ Y 6w+ ar.
ox

Selecting v:—aa—VG(x)—ka), k>0 and substituting
X

this into (37), we obtain
V, <-W(x)—ko®. (38)
Clearly, VC is negative definite, so the origin x = 0
is asymptotically stable. Using a(0) = 0 we can conclude
that the origin x = 0, £ = 0 is also asymptotically stable.
This leads to the conclusion of a CLF. Hence, it can be
seen that the Lyapunov function ¥V, defined in (36) is a
CLF for the system (29).
Examples
We present examples which illustrate constructions
of CLFs for a feedback linearizable system and a system
with an integrator at the input.
Example |
Consider
X; = asin(x,)
Xy = —X{ +u (39)
y =X
where a is a constant. Suppose that we want to find a

CLF for the system above. We begin by finding

h(x) =y=Xx
and
Zl =)C1
2 = Lph(x)= 6’;3) fx)=[1 O]{asm(f2 )} =asin(x,) = X,
M

(40)
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This generates the transformed state system
Z.l =2
(41)

and the nonlinearity may now be cancelled by the

2y = acos(xy )(—xi +u)

control
2 1

_—.
acos(x,) (42)

Now this particular transformation is invertible for

T T .
—E<x2 <E and we can express x; and x, in terms of

z, and z, as follows,

N =4
X, = sin”! (Z—Z). (43)
a
Substituting (43) into (41) yields
Z.l =2y
44
2y = acos(sin” (Z—Z))(—zl2 +u) (44)
a
where
2 1
u=xi +——v
acos(x,)
1
2
R (45)
a cos(sin_l (Z—z))
a
Inserting (45) into the transformed system yields,
=2
=V, (46)

which is completely linearized. To find a CLF, the system

is now described by equation

z=Az+Bv (47)
where
0 1 0
= A= , B=|| (@8
re 0 0 1
Therefore, using (13) a CLF for the above system is
V=z"Pz (49)

where P = PT> 0 is the unique solution of the Riccati
equation

PA+A"P+Q-PBB P=0. (50)
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Note that when we obtain a CLF, the Sontag's formula
can be used to design a stabilizing control law.
Example I
Consider the system
X =X x4
(51)

and now suppose that in the first component x, is viewed

Xy =u

as an input. A feedback controller x, = a(x,) is designed
to stabilize x, = 0.

With the following feedback

X, =a(x)=—xt —x, (52)
we cancel the nonlinear term x12 to obtain
).Cl = _xl —x13
(53)
1
and V(x) =5x12 satisfies
Vz—xlz—)cl4 S—xlz, (54)

so that x, = 0 is globally exponentially stable.
To apply the integrator backstepping technique, we use

the change of variables

2o =X — (X)) =Xy + X, + X (55)
to transform the system into the form
X ==X, =X +2,
2y =u+(142x)(—x, — X} +2,) (56)

Consider the augmented control Lyapunov function

I o 15
V.(x)==x{ +=2,.
c( ) 2 1 222 (57)
Differentiating ¥, gives
V. =—xi —x + 2,0 +(14+2x,)(~x; — X} +2,) +1) (58)
Taking u =—x; —(1+2x)(—x, —x13 +2,) — 2z, gives
Vo=—x —x' —23 (59)

Hence the origin is globally asymptotically stable and we
obtain ¥, defined in (57) as a CLF for the system (51).

Discussions on the main limitation and future

researches of the CLF approach



The difficulty of the CLF scheme is to find a CLF
because theory developed to find a CLF for a general
nonlinear system has not appeared, but feedback linear-
ization can be used to construct a CLF when the system
dynamics can be transformed into a linear structure.
Similarly, the integrator backstepping technique can be
applied to generate a CLF whenever the system can be
put into a cascade structure. However, practical system
designs of general applications are normally involved
with various classes of nonlinear systems. This is the
reason why the CLF approach is not popular to be used
in real-life applications. We believe that the future stud-
ies regarding the CLF approach will focus on the theory
development to find a CLF for other classes of nonlinear
systems. Once a CLF can be found for a general class of
nonlinear systems, researches on practical applications
of this method to design feedback stabilizing control laws

will be later conducted.

Conclusion

In this paper reviews of synthesizing state feedback
controller using the CLF method and the construction
of CLFs for some special classes of nonlinear systems
have been proposed. For practical implementation it is
always difficult to find a CLF specifically for each nonlinear
system. Due to the limitation of this method, it is rarely
applied to design suboptimal controllers for practical
nonlinear systems. Examples are presented to demon-
strate the construction of CLFs for a feedback linearizable

system and a system with integrator backstepping.
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