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บทคัดย่อ

	 ในบทความนี้ การสร้างฟังก์ชันควบคุมเชิงไลปูนอฟได้ถูกทบทวน วิธีการของฟังก์ชันควบคุมเชิงไลปูนอฟถูกอ้างถึงเพื่อแก้ปัญหา 

การควบคุมแบบเหมาะสมที่สุดชนิดที่เวลาไม่จำกัด เราอธิบายสมการเชิงอนุพันธ์ย่อยของแฮมิลตัน ยาโคบี เบลแมนและพบว่าคำตอบที่ 

เหมาะสมที่สุดแบบย่อยของสมการนี้สามารถหาได้จากการใช้ฟังก์ชันควบคุมเชิงไลปูนอฟ ต่อมาการประยุกต์ของสูตรซองแทคเพื่อ 

ออกแบบตัวควบคุมแบบเหมาะสมที่สุดได้ถูกรวบรวมและสรุป บทความนี้อธิบายการสร้างฟังก์ชันควบคุมเชิงไลปูนอฟสำหรับระบบ 

ควบคุมที่ไม่เป็นเชิงเส้นซึ่งประกอบไปด้วย ระบบที่สามารถถูกทำให้เป็นเชิงเส้นแบบป้อนกลับและระบบที่มีอินทิเกรเตอร์แบคสเตปปิ้ง 

นอกจากนี้ตัวอย่างเพื่อประกอบคำอธิบายการออกแบบเชิงไลปูนอฟโดยใช้ฟังก์ชันควบคุมเชิงไลปูนอฟได้ถูกนำเสนอ

คำสำคัญ :  ฟังก์ชันควบคุมเชิงไลปูนอฟ   สูตรของซองแทค   การทำให้เป็นเชิงเส้นแบบป้อนกลับ   อินทิเกรเตอร์แบคสเตปปิ้ง

Abstract

	 In this paper, the construction of control Lyapunov functions (CLFs) for nonlinear systems is reviewed. A CLF 

approach is restated to solve the infinite-time optimal control problem. The Hamilton–Jacobi–Bellman (HJB) partial 

differential equation is illustrated and suboptimal solutions can be found by the use of CLFs. Further, the application 

of the generalization of Sontag’s formula to design an optimal feedback stabilizing controller is briefly summarized.   

The construction of CLFs for several special classes of nonlinear systems including feedback linearization and inte-

grator backstepping is explained with simplified expressions of developed theories. Examples are also presented to 

illustrate Lyapunov-based controller design techniques using a CLF. 
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Introduction
	 Lyapunov functions are used to show a sufficient 

condition for proving the stability of a dynamical system 

(for a reference see (Khalil, 1992 ; Hahn, 1967 ; Rouche 

et al., 1977)). This energy-like function must always be 

a positive-definite function of the state, and it must be 

decreasing along trajectories of the state. Unfortunately, 

the Lyapunov functions prove stability for closed-loop 

systems, where the control law is already known. To har-

ness the power of this theory for the purpose of control 

synthesis, Lyapunov’s second method was extended to 

dynamical systems with inputs by Artstein  (Artstein, 1983) 

and Sontag  (Sontag, 1983) with the introduction of control 

Lyapunov functions (CLFs). Similar to Lyapunov stability 

theorem the existence of a CFL is also a necessary and 

sufficient condition for the stabilizability of nonlinear  

systems with control inputs.  For nonlinear optimal control 

problem, it has shown that a standard dynamic program-

ming approach reduces the problem to the HJB partial 

differential equation. In other word, to solve optimal 

control problems is equivalent to solve the HJB equation. 

However, it is very complicate to solve the HJB equation 

for nonlinear dynamic systems. Hence suboptimal solu-

tions obtained by using the CLF concept are considered.   

In contrast with traditional Lyapunov functions, a CLF can 

be defined for a system with inputs without specifying a 

particular feedback function. Sontag (Sontag, 1989) has 

shown that, if a CLF is known for a nonlinear system, then 

the CLF and the system equations can be used to find a 

controller that makes the system asymptotically stable. 

Freeman and Kokotovi (Freeman & Kokotovi, 1996) have 

shown that every CLF solves the HJB equation associated 

with a meaningful cost. In other words, if a CLF exists for a 

nonlinear system, we can compute the resulting optimal 

control law without solving the HJB equation. 

	 Finding a CLF for a general nonlinear system is an 

open problem. For several special classes of nonlinear 

systems, CLFs can be founded. Feedback linearization 

(Lin & Sontag,1991; Malisoff & Sontag, 1997) can be used 

to construct a CLF when the system dynamics can be 

transformed into a linear structure. Likewise, integra-

tor backstepping (Sepulchre et al., 1997; Krstic et al., 

1975; Krstic & Li, 1998) will generate a CLF whenever 

the system can be put into a cascade structure. In this 

paper we summarize the application of a CLF to design 

an optimal feedback stabilizing controller and review 

the construction of CLFs for special classes of nonlinear 

systems. Furthermore, we give discussions of subsequent 

researches involving CLFs that may be performed in the 

future.  

Problem Formation
	 Consider the following optimal control problem

                                                                      (1)

                                                                 (2)

where                   denotes the state,                 represents 

the control and                is a sufficiently smooth func- 

tion of the state vector x(t), and x(0) is the initial con-

dition of the process. q(x) is continuously differentia- 

ble, symmetric positive definite and (f, q) is zero-detect-

able.   

 	 The aim is to determine the control signal u to  

solve the system (2) and minimize the performance 

index (1). Next the procedure to derive the HJB equa-

tion presented by Primbs and his co-researchers (Primbs 

et al., 1999) is restated. 

	 Using a standard dynamic programming argument, 

the HJB equation for the above problem can be written 

as

                                                 (3)

where                                           .       is the minimum cost  

to go from the current state x(t), i.e.,
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reference see (Khalil, 1992 ; Hahn, 1967 ;   Rouche et al., 1977)). This energy-like function must always be a positive-definite 
function of the state, and it must be decreasing along trajectories of the state. Unfortunately, the Lyapunov functions prove 
stability for closed-loop systems, where the control law is already known. To harness the power of this theory for the purpose of 
control synthesis, Lyapunov’s second method was extended to dynamical systems with inputs by Artstein  (Artstein, 1983) and 
Sontag  (Sontag, 1983) with the introduction of control Lyapunov functions (CLFs). Similar to Lyapunov stability theorem the 
existence of a CFL is also a necessary and sufficient condition for the stabilizability of nonlinear systems with control input.  For 
nonlinear optimal control problem, it has shown that a standard dynamic programming approach reduces the problem to the HJB 
partial differential equation.  In other word, to solve optimal control problems is equivalent to solve the HJB equation. However it 
is very complicate to solve the HJB equation for nonlinear dynamic systems. Hence suboptimal solutions obtained by using the 
CLF concept are considered.   In contrast with traditional Lyapunov functions, a CLF can be defined for a system with inputs 
without specifying a particular feedback function. Sontag (Sontag, 1989) has shown that, if a CLF is known for a nonlinear system, 
then the CLF and the system equations can be used to find a controller that makes the system asymptotically stable. Freeman 
and Kokotovi (Freeman & Kokotovi, 1996) have shown that every CLF solves the HJB equation associated with a meaningful cost. In 
other words, if a CLF exists for a nonlinear system, we can compute the resulting optimal control law without solving the HJB 
equation.  
 Finding a CLF for a general nonlinear system is an open problem. For several special classes of nonlinear systems, CLFs 
can be founded. Feedback linearization (Lin & Sontag,1991;   Malisoff  & Sontag, 1997) can be used to construct a CLF when the 
system dynamics can be transformed into a linear structure. Likewise, integrator backstepping (Sepulchre et al., 1997; Krstic et al., 
1975; Krstic  & Li, 1998) will generate a CLF whenever the system can be put into a cascade structure. In this paper we summarize 
the application of a CLF to design an optimal feedback stabilizing controller and review the construction of CLFs for special classes 
of nonlinear systems.  Furthermore, we give discussions of subsequent researches involving CLFs that may be performed in the 
future.   
 
Problem Formation 

Consider the following optimal control problem 

      2

( )
0

min [ ( ) ]
u

q x u dt



                                                                (1) 

. . ( ) ( )dxs t f x g x u
dt

                                                                  (2) 

where ( ) nx t   denotes the state,  ( )u t   represents the control and nxf )(  is a sufficiently smooth function of the 
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  The aim is to determine the control signal u  to solve the system (2) and minimize the performance index (1). Next the 
procedure to derive the HJB equation presented by Primbs and his co-researchers (Primbs et al., 1999) is restated.  
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Note that u is bounded when gVx  goes to zero. Under this control input it can be found that 

))()(( uxgxfVV x                                                          (10) 
 

Substituting u  into (10), we obtain 

.))(()( 2 T
x

T
xx VggVxqfVV                                                    (11) 

Obviously, 0V  is ensured and one can conclude that this controller yields global asymptotic stability. 
  

Construction of CLFs for a linear system 
 

In this section we review a method to construct a CLF for a linear system  
BuAxx                                                                     (12) 

 3 

If a continuously differentiable, positive solution to the HJB equation (3) exists, then the optimal control input is given by 

)(
2
1 xgVu x

                                                                  (5) 

At this stage, the HJB equation (3) solves the optimal control problem for every initial condition all at once. Hence, it is 
a global approach in this sense and offers a closed-loop feedback formula for the optimal controller. However, the HJB equation is 
extremely difficult to solve analytically.  We alternatively seek a suboptimal solution. Thus, the basic concepts of a CLF (Primbs et 
al., 1999) to obtain a suboptimal solution are also given below. 
 
Definition 1 (Primbs et al., 1999): A continuously differentiable positive definite function )(xV  is called a Control Lyapunov 

Function (CLF) for system (2) if for Nx   and 0x , 

              .00  fVgV xx                                                                  
We assume that )(xV  is a CLF for the system (2) and )(xV  possesses the same shape level curves as those of the value 

function .V  This implies a relationship between the gradients of  V  and V . In such a circumstance, there exists a scalar 

function )(x  such that xx VxV )(
 for every x .  Thus the optimal controller (5) can also be rewritten as 

 .)(
2

)()(
2
1 xgVxxgVu xx


                                                          (6) 

In addition, substituting xx VxV )(  into the HJB equation (3), )(x can be determined by 

.0)())((
4
1)( 2  xqVggVxfVx T

x
T

xx                                                    (7) 

Solving (7) and taking only the positive square root, yields 

.
])[()(

2)(
2













 
 T

x
T

x

T
x

T
xxx

VggV
VggVxqfVfV

x                                                 (8) 

Substituting (8) into (6), then the controller u  becomes  
 

























 




0,0

0,
))(()( 2

gV

gVVg
VggV

VggVxqfVfV
u

x

x
T
x

T
T
x

T
x

T
x

T
xxx

                                (9)  

which is known as  Sontag's formula (Sontag, 1989). 

Note that u is bounded when gVx  goes to zero. Under this control input it can be found that 

))()(( uxgxfVV x                                                          (10) 
 

Substituting u  into (10), we obtain 

.))(()( 2 T
x

T
xx VggVxqfVV                                                    (11) 

Obviously, 0V  is ensured and one can conclude that this controller yields global asymptotic stability. 
  

Construction of CLFs for a linear system 
 

In this section we review a method to construct a CLF for a linear system  
BuAxx                                                                     (12) 

 3 

If a continuously differentiable, positive solution to the HJB equation (3) exists, then the optimal control input is given by 

)(
2
1 xgVu x

                                                                  (5) 

At this stage, the HJB equation (3) solves the optimal control problem for every initial condition all at once. Hence, it is 
a global approach in this sense and offers a closed-loop feedback formula for the optimal controller. However, the HJB equation is 
extremely difficult to solve analytically.  We alternatively seek a suboptimal solution. Thus, the basic concepts of a CLF (Primbs et 
al., 1999) to obtain a suboptimal solution are also given below. 
 
Definition 1 (Primbs et al., 1999): A continuously differentiable positive definite function )(xV  is called a Control Lyapunov 

Function (CLF) for system (2) if for Nx   and 0x , 

              .00  fVgV xx                                                                  
We assume that )(xV  is a CLF for the system (2) and )(xV  possesses the same shape level curves as those of the value 

function .V  This implies a relationship between the gradients of  V  and V . In such a circumstance, there exists a scalar 

function )(x  such that xx VxV )(
 for every x .  Thus the optimal controller (5) can also be rewritten as 

 .)(
2

)()(
2
1 xgVxxgVu xx


                                                          (6) 

In addition, substituting xx VxV )(  into the HJB equation (3), )(x can be determined by 

.0)())((
4
1)( 2  xqVggVxfVx T

x
T

xx                                                    (7) 

Solving (7) and taking only the positive square root, yields 

.
])[()(

2)(
2













 
 T

x
T

x

T
x

T
xxx

VggV
VggVxqfVfV

x                                                 (8) 

Substituting (8) into (6), then the controller u  becomes  
 

























 




0,0

0,
))(()( 2

gV

gVVg
VggV

VggVxqfVfV
u

x

x
T
x

T
T
x

T
x

T
x

T
xxx

                                (9)  

which is known as  Sontag's formula (Sontag, 1989). 

Note that u is bounded when gVx  goes to zero. Under this control input it can be found that 

))()(( uxgxfVV x                                                          (10) 
 

Substituting u  into (10), we obtain 

.))(()( 2 T
x

T
xx VggVxqfVV                                                    (11) 

Obviously, 0V  is ensured and one can conclude that this controller yields global asymptotic stability. 
  

Construction of CLFs for a linear system 
 

In this section we review a method to construct a CLF for a linear system  
BuAxx                                                                     (12) 

 3 

If a continuously differentiable, positive solution to the HJB equation (3) exists, then the optimal control input is given by 

)(
2
1 xgVu x

                                                                  (5) 

At this stage, the HJB equation (3) solves the optimal control problem for every initial condition all at once. Hence, it is 
a global approach in this sense and offers a closed-loop feedback formula for the optimal controller. However, the HJB equation is 
extremely difficult to solve analytically.  We alternatively seek a suboptimal solution. Thus, the basic concepts of a CLF (Primbs et 
al., 1999) to obtain a suboptimal solution are also given below. 
 
Definition 1 (Primbs et al., 1999): A continuously differentiable positive definite function )(xV  is called a Control Lyapunov 

Function (CLF) for system (2) if for Nx   and 0x , 

              .00  fVgV xx                                                                  
We assume that )(xV  is a CLF for the system (2) and )(xV  possesses the same shape level curves as those of the value 

function .V  This implies a relationship between the gradients of  V  and V . In such a circumstance, there exists a scalar 

function )(x  such that xx VxV )(
 for every x .  Thus the optimal controller (5) can also be rewritten as 

 .)(
2

)()(
2
1 xgVxxgVu xx


                                                          (6) 

In addition, substituting xx VxV )(  into the HJB equation (3), )(x can be determined by 

.0)())((
4
1)( 2  xqVggVxfVx T

x
T

xx                                                    (7) 

Solving (7) and taking only the positive square root, yields 

.
])[()(

2)(
2













 
 T

x
T

x

T
x

T
xxx

VggV
VggVxqfVfV

x                                                 (8) 

Substituting (8) into (6), then the controller u  becomes  
 

























 




0,0

0,
))(()( 2

gV

gVVg
VggV

VggVxqfVfV
u

x

x
T
x

T
T
x

T
x

T
x

T
xxx

                                (9)  

which is known as  Sontag's formula (Sontag, 1989). 

Note that u is bounded when gVx  goes to zero. Under this control input it can be found that 

))()(( uxgxfVV x                                                          (10) 
 

Substituting u  into (10), we obtain 

.))(()( 2 T
x

T
xx VggVxqfVV                                                    (11) 

Obviously, 0V  is ensured and one can conclude that this controller yields global asymptotic stability. 
  

Construction of CLFs for a linear system 
 

In this section we review a method to construct a CLF for a linear system  
BuAxx                                                                     (12) 

 3 

If a continuously differentiable, positive solution to the HJB equation (3) exists, then the optimal control input is given by 

)(
2
1 xgVu x

                                                                  (5) 

At this stage, the HJB equation (3) solves the optimal control problem for every initial condition all at once. Hence, it is 
a global approach in this sense and offers a closed-loop feedback formula for the optimal controller. However, the HJB equation is 
extremely difficult to solve analytically.  We alternatively seek a suboptimal solution. Thus, the basic concepts of a CLF (Primbs et 
al., 1999) to obtain a suboptimal solution are also given below. 
 
Definition 1 (Primbs et al., 1999): A continuously differentiable positive definite function )(xV  is called a Control Lyapunov 

Function (CLF) for system (2) if for Nx   and 0x , 

              .00  fVgV xx                                                                  
We assume that )(xV  is a CLF for the system (2) and )(xV  possesses the same shape level curves as those of the value 

function .V  This implies a relationship between the gradients of  V  and V . In such a circumstance, there exists a scalar 

function )(x  such that xx VxV )(
 for every x .  Thus the optimal controller (5) can also be rewritten as 

 .)(
2

)()(
2
1 xgVxxgVu xx


                                                          (6) 

In addition, substituting xx VxV )(  into the HJB equation (3), )(x can be determined by 

.0)())((
4
1)( 2  xqVggVxfVx T

x
T

xx                                                    (7) 

Solving (7) and taking only the positive square root, yields 

.
])[()(

2)(
2













 
 T

x
T

x

T
x

T
xxx

VggV
VggVxqfVfV

x                                                 (8) 

Substituting (8) into (6), then the controller u  becomes  
 

























 




0,0

0,
))(()( 2

gV

gVVg
VggV

VggVxqfVfV
u

x

x
T
x

T
T
x

T
x

T
x

T
xxx

                                (9)  

which is known as  Sontag's formula (Sontag, 1989). 

Note that u is bounded when gVx  goes to zero. Under this control input it can be found that 

))()(( uxgxfVV x                                                          (10) 
 

Substituting u  into (10), we obtain 

.))(()( 2 T
x

T
xx VggVxqfVV                                                    (11) 

Obviously, 0V  is ensured and one can conclude that this controller yields global asymptotic stability. 
  

Construction of CLFs for a linear system 
 

In this section we review a method to construct a CLF for a linear system  
BuAxx                                                                     (12) 

 3 

If a continuously differentiable, positive solution to the HJB equation (3) exists, then the optimal control input is given by 

)(
2
1 xgVu x

                                                                  (5) 

At this stage, the HJB equation (3) solves the optimal control problem for every initial condition all at once. Hence, it is 
a global approach in this sense and offers a closed-loop feedback formula for the optimal controller. However, the HJB equation is 
extremely difficult to solve analytically.  We alternatively seek a suboptimal solution. Thus, the basic concepts of a CLF (Primbs et 
al., 1999) to obtain a suboptimal solution are also given below. 
 
Definition 1 (Primbs et al., 1999): A continuously differentiable positive definite function )(xV  is called a Control Lyapunov 

Function (CLF) for system (2) if for Nx   and 0x , 

              .00  fVgV xx                                                                  
We assume that )(xV  is a CLF for the system (2) and )(xV  possesses the same shape level curves as those of the value 

function .V  This implies a relationship between the gradients of  V  and V . In such a circumstance, there exists a scalar 

function )(x  such that xx VxV )(
 for every x .  Thus the optimal controller (5) can also be rewritten as 

 .)(
2

)()(
2
1 xgVxxgVu xx


                                                          (6) 

In addition, substituting xx VxV )(  into the HJB equation (3), )(x can be determined by 

.0)())((
4
1)( 2  xqVggVxfVx T

x
T

xx                                                    (7) 

Solving (7) and taking only the positive square root, yields 

.
])[()(

2)(
2













 
 T

x
T

x

T
x

T
xxx

VggV
VggVxqfVfV

x                                                 (8) 

Substituting (8) into (6), then the controller u  becomes  
 

























 




0,0

0,
))(()( 2

gV

gVVg
VggV

VggVxqfVfV
u

x

x
T
x

T
T
x

T
x

T
x

T
xxx

                                (9)  

which is known as  Sontag's formula (Sontag, 1989). 

Note that u is bounded when gVx  goes to zero. Under this control input it can be found that 

))()(( uxgxfVV x                                                          (10) 
 

Substituting u  into (10), we obtain 

.))(()( 2 T
x

T
xx VggVxqfVV                                                    (11) 

Obviously, 0V  is ensured and one can conclude that this controller yields global asymptotic stability. 
  

Construction of CLFs for a linear system 
 

In this section we review a method to construct a CLF for a linear system  
BuAxx                                                                     (12) 

 3 

If a continuously differentiable, positive solution to the HJB equation (3) exists, then the optimal control input is given by 

)(
2
1 xgVu x

                                                                  (5) 

At this stage, the HJB equation (3) solves the optimal control problem for every initial condition all at once. Hence, it is 
a global approach in this sense and offers a closed-loop feedback formula for the optimal controller. However, the HJB equation is 
extremely difficult to solve analytically.  We alternatively seek a suboptimal solution. Thus, the basic concepts of a CLF (Primbs et 
al., 1999) to obtain a suboptimal solution are also given below. 
 
Definition 1 (Primbs et al., 1999): A continuously differentiable positive definite function )(xV  is called a Control Lyapunov 

Function (CLF) for system (2) if for Nx   and 0x , 

              .00  fVgV xx                                                                  
We assume that )(xV  is a CLF for the system (2) and )(xV  possesses the same shape level curves as those of the value 

function .V  This implies a relationship between the gradients of  V  and V . In such a circumstance, there exists a scalar 

function )(x  such that xx VxV )(
 for every x .  Thus the optimal controller (5) can also be rewritten as 

 .)(
2

)()(
2
1 xgVxxgVu xx


                                                          (6) 

In addition, substituting xx VxV )(  into the HJB equation (3), )(x can be determined by 

.0)())((
4
1)( 2  xqVggVxfVx T

x
T

xx                                                    (7) 

Solving (7) and taking only the positive square root, yields 

.
])[()(

2)(
2













 
 T

x
T

x

T
x

T
xxx

VggV
VggVxqfVfV

x                                                 (8) 

Substituting (8) into (6), then the controller u  becomes  
 

























 




0,0

0,
))(()( 2

gV

gVVg
VggV

VggVxqfVfV
u

x

x
T
x

T
T
x

T
x

T
x

T
xxx

                                (9)  

which is known as  Sontag's formula (Sontag, 1989). 

Note that u is bounded when gVx  goes to zero. Under this control input it can be found that 

))()(( uxgxfVV x                                                          (10) 
 

Substituting u  into (10), we obtain 

.))(()( 2 T
x

T
xx VggVxqfVV                                                    (11) 

Obviously, 0V  is ensured and one can conclude that this controller yields global asymptotic stability. 
  

Construction of CLFs for a linear system 
 

In this section we review a method to construct a CLF for a linear system  
BuAxx                                                                     (12) 

 3 

If a continuously differentiable, positive solution to the HJB equation (3) exists, then the optimal control input is given by 

)(
2
1 xgVu x

                                                                  (5) 

At this stage, the HJB equation (3) solves the optimal control problem for every initial condition all at once. Hence, it is 
a global approach in this sense and offers a closed-loop feedback formula for the optimal controller. However, the HJB equation is 
extremely difficult to solve analytically.  We alternatively seek a suboptimal solution. Thus, the basic concepts of a CLF (Primbs et 
al., 1999) to obtain a suboptimal solution are also given below. 
 
Definition 1 (Primbs et al., 1999): A continuously differentiable positive definite function )(xV  is called a Control Lyapunov 

Function (CLF) for system (2) if for Nx   and 0x , 

              .00  fVgV xx                                                                  
We assume that )(xV  is a CLF for the system (2) and )(xV  possesses the same shape level curves as those of the value 

function .V  This implies a relationship between the gradients of  V  and V . In such a circumstance, there exists a scalar 

function )(x  such that xx VxV )(
 for every x .  Thus the optimal controller (5) can also be rewritten as 

 .)(
2

)()(
2
1 xgVxxgVu xx


                                                          (6) 

In addition, substituting xx VxV )(  into the HJB equation (3), )(x can be determined by 

.0)())((
4
1)( 2  xqVggVxfVx T

x
T

xx                                                    (7) 

Solving (7) and taking only the positive square root, yields 

.
])[()(

2)(
2













 
 T

x
T

x

T
x

T
xxx

VggV
VggVxqfVfV

x                                                 (8) 

Substituting (8) into (6), then the controller u  becomes  
 

























 




0,0

0,
))(()( 2

gV

gVVg
VggV

VggVxqfVfV
u

x

x
T
x

T
T
x

T
x

T
x

T
xxx

                                (9)  

which is known as  Sontag's formula (Sontag, 1989). 

Note that u is bounded when gVx  goes to zero. Under this control input it can be found that 

))()(( uxgxfVV x                                                          (10) 
 

Substituting u  into (10), we obtain 

.))(()( 2 T
x

T
xx VggVxqfVV                                                    (11) 

Obviously, 0V  is ensured and one can conclude that this controller yields global asymptotic stability. 
  

Construction of CLFs for a linear system 
 

In this section we review a method to construct a CLF for a linear system  
BuAxx                                                                     (12) 

 3 

If a continuously differentiable, positive solution to the HJB equation (3) exists, then the optimal control input is given by 

)(
2
1 xgVu x

                                                                  (5) 

At this stage, the HJB equation (3) solves the optimal control problem for every initial condition all at once. Hence, it is 
a global approach in this sense and offers a closed-loop feedback formula for the optimal controller. However, the HJB equation is 
extremely difficult to solve analytically.  We alternatively seek a suboptimal solution. Thus, the basic concepts of a CLF (Primbs et 
al., 1999) to obtain a suboptimal solution are also given below. 
 
Definition 1 (Primbs et al., 1999): A continuously differentiable positive definite function )(xV  is called a Control Lyapunov 

Function (CLF) for system (2) if for Nx   and 0x , 

              .00  fVgV xx                                                                  
We assume that )(xV  is a CLF for the system (2) and )(xV  possesses the same shape level curves as those of the value 

function .V  This implies a relationship between the gradients of  V  and V . In such a circumstance, there exists a scalar 

function )(x  such that xx VxV )(
 for every x .  Thus the optimal controller (5) can also be rewritten as 

 .)(
2

)()(
2
1 xgVxxgVu xx


                                                          (6) 

In addition, substituting xx VxV )(  into the HJB equation (3), )(x can be determined by 

.0)())((
4
1)( 2  xqVggVxfVx T

x
T

xx                                                    (7) 

Solving (7) and taking only the positive square root, yields 

.
])[()(

2)(
2













 
 T

x
T

x

T
x

T
xxx

VggV
VggVxqfVfV

x                                                 (8) 

Substituting (8) into (6), then the controller u  becomes  
 

























 




0,0

0,
))(()( 2

gV

gVVg
VggV

VggVxqfVfV
u

x

x
T
x

T
T
x

T
x

T
x

T
xxx

                                (9)  

which is known as  Sontag's formula (Sontag, 1989). 

Note that u is bounded when gVx  goes to zero. Under this control input it can be found that 

))()(( uxgxfVV x                                                          (10) 
 

Substituting u  into (10), we obtain 

.))(()( 2 T
x

T
xx VggVxqfVV                                                    (11) 

Obviously, 0V  is ensured and one can conclude that this controller yields global asymptotic stability. 
  

Construction of CLFs for a linear system 
 

In this section we review a method to construct a CLF for a linear system  
BuAxx                                                                     (12) 

 3 

If a continuously differentiable, positive solution to the HJB equation (3) exists, then the optimal control input is given by 

)(
2
1 xgVu x

                                                                  (5) 

At this stage, the HJB equation (3) solves the optimal control problem for every initial condition all at once. Hence, it is 
a global approach in this sense and offers a closed-loop feedback formula for the optimal controller. However, the HJB equation is 
extremely difficult to solve analytically.  We alternatively seek a suboptimal solution. Thus, the basic concepts of a CLF (Primbs et 
al., 1999) to obtain a suboptimal solution are also given below. 
 
Definition 1 (Primbs et al., 1999): A continuously differentiable positive definite function )(xV  is called a Control Lyapunov 

Function (CLF) for system (2) if for Nx   and 0x , 

              .00  fVgV xx                                                                  
We assume that )(xV  is a CLF for the system (2) and )(xV  possesses the same shape level curves as those of the value 

function .V  This implies a relationship between the gradients of  V  and V . In such a circumstance, there exists a scalar 

function )(x  such that xx VxV )(
 for every x .  Thus the optimal controller (5) can also be rewritten as 

 .)(
2

)()(
2
1 xgVxxgVu xx


                                                          (6) 

In addition, substituting xx VxV )(  into the HJB equation (3), )(x can be determined by 

.0)())((
4
1)( 2  xqVggVxfVx T

x
T

xx                                                    (7) 

Solving (7) and taking only the positive square root, yields 

.
])[()(

2)(
2













 
 T

x
T

x

T
x

T
xxx

VggV
VggVxqfVfV

x                                                 (8) 

Substituting (8) into (6), then the controller u  becomes  
 

























 




0,0

0,
))(()( 2

gV

gVVg
VggV

VggVxqfVfV
u

x

x
T
x

T
T
x

T
x

T
x

T
xxx

                                (9)  

which is known as  Sontag's formula (Sontag, 1989). 

Note that u is bounded when gVx  goes to zero. Under this control input it can be found that 

))()(( uxgxfVV x                                                          (10) 
 

Substituting u  into (10), we obtain 

.))(()( 2 T
x

T
xx VggVxqfVV                                                    (11) 

Obviously, 0V  is ensured and one can conclude that this controller yields global asymptotic stability. 
  

Construction of CLFs for a linear system 
 

In this section we review a method to construct a CLF for a linear system  
BuAxx                                                                     (12) 

 3 

If a continuously differentiable, positive solution to the HJB equation (3) exists, then the optimal control input is given by 

)(
2
1 xgVu x

                                                                  (5) 

At this stage, the HJB equation (3) solves the optimal control problem for every initial condition all at once. Hence, it is 
a global approach in this sense and offers a closed-loop feedback formula for the optimal controller. However, the HJB equation is 
extremely difficult to solve analytically.  We alternatively seek a suboptimal solution. Thus, the basic concepts of a CLF (Primbs et 
al., 1999) to obtain a suboptimal solution are also given below. 
 
Definition 1 (Primbs et al., 1999): A continuously differentiable positive definite function )(xV  is called a Control Lyapunov 

Function (CLF) for system (2) if for Nx   and 0x , 

              .00  fVgV xx                                                                  
We assume that )(xV  is a CLF for the system (2) and )(xV  possesses the same shape level curves as those of the value 

function .V  This implies a relationship between the gradients of  V  and V . In such a circumstance, there exists a scalar 

function )(x  such that xx VxV )(
 for every x .  Thus the optimal controller (5) can also be rewritten as 

 .)(
2

)()(
2
1 xgVxxgVu xx


                                                          (6) 

In addition, substituting xx VxV )(  into the HJB equation (3), )(x can be determined by 

.0)())((
4
1)( 2  xqVggVxfVx T

x
T

xx                                                    (7) 

Solving (7) and taking only the positive square root, yields 

.
])[()(

2)(
2













 
 T

x
T

x

T
x

T
xxx

VggV
VggVxqfVfV

x                                                 (8) 

Substituting (8) into (6), then the controller u  becomes  
 

























 




0,0

0,
))(()( 2

gV

gVVg
VggV

VggVxqfVfV
u

x

x
T
x

T
T
x

T
x

T
x

T
xxx

                                (9)  

which is known as  Sontag's formula (Sontag, 1989). 

Note that u is bounded when gVx  goes to zero. Under this control input it can be found that 

))()(( uxgxfVV x                                                          (10) 
 

Substituting u  into (10), we obtain 

.))(()( 2 T
x

T
xx VggVxqfVV                                                    (11) 

Obviously, 0V  is ensured and one can conclude that this controller yields global asymptotic stability. 
  

Construction of CLFs for a linear system 
 

In this section we review a method to construct a CLF for a linear system  
BuAxx                                                                     (12) 

 3 

If a continuously differentiable, positive solution to the HJB equation (3) exists, then the optimal control input is given by 

)(
2
1 xgVu x

                                                                  (5) 

At this stage, the HJB equation (3) solves the optimal control problem for every initial condition all at once. Hence, it is 
a global approach in this sense and offers a closed-loop feedback formula for the optimal controller. However, the HJB equation is 
extremely difficult to solve analytically.  We alternatively seek a suboptimal solution. Thus, the basic concepts of a CLF (Primbs et 
al., 1999) to obtain a suboptimal solution are also given below. 
 
Definition 1 (Primbs et al., 1999): A continuously differentiable positive definite function )(xV  is called a Control Lyapunov 

Function (CLF) for system (2) if for Nx   and 0x , 

              .00  fVgV xx                                                                  
We assume that )(xV  is a CLF for the system (2) and )(xV  possesses the same shape level curves as those of the value 

function .V  This implies a relationship between the gradients of  V  and V . In such a circumstance, there exists a scalar 

function )(x  such that xx VxV )(
 for every x .  Thus the optimal controller (5) can also be rewritten as 

 .)(
2

)()(
2
1 xgVxxgVu xx


                                                          (6) 

In addition, substituting xx VxV )(  into the HJB equation (3), )(x can be determined by 

.0)())((
4
1)( 2  xqVggVxfVx T

x
T

xx                                                    (7) 

Solving (7) and taking only the positive square root, yields 

.
])[()(

2)(
2













 
 T

x
T

x

T
x

T
xxx

VggV
VggVxqfVfV

x                                                 (8) 
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which is known as  Sontag's formula (Sontag, 1989). 
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Obviously, 0V  is ensured and one can conclude that this controller yields global asymptotic stability. 
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where  nx   denotes the state,  u  represents the control, nnA   is a constant matrix and  nB   denotes a 
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For linear systems, the unique solution P  results in the optimal value function .V   However,  
in general, this relation does not hold for nonlinear systems.   
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Substituting (18) into (17), we obtain 
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Construction of CLFs by using the integrator 

backstepping technique 
	 In this section a CLF for a more general class of 

nonlinear systems with the integrator backstepping tech-

nique is reviewed. Consider the system in control affine 

form with an integrator at the input
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where                   are the states, and           is the 

control input. We want to design a feedback controller 

to stabilize the origin                 

	 The system can be seen as the cascaded connec-

tion of two components. Suppose that the first compo-

nent can be stabilized by a feedback law ξ = α(x) with 

α(0) = 0, so that the origin of 
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which is similar to the system from which we began, 

except that now the first component is asymptotically 

stable when the input is zero. 

	 A Lyapunov function candidate can be chosen 
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Examples

	 We present examples which illustrate constructions 

of CLFs for a feedback linearizable system and a system 

with an integrator at the input. 
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Clearly, cV is negative definite, so the origin 0,0  x   is asymptotically stable.  Using 0)0(  we can 
conclude that the origin 0,0  x   is also asymptotically stable.  This leads to the conclusion of a CLF. Hence, it can be 
seen that the Lyapunov function cV  defined in (36) is a CLF for the system (29). 
 
Examples 
 

We present examples which illustrate constructions of CLFs for a feedback linearizable system and a system with an 
integrator at the input.  
 

Example I 
 

Consider   
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where a  is a constant. Suppose that we want to find a CLF for the system above.  We begin by finding 
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This generates the transformed state equation 

))(cos( 2
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21
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                                                        (41) 

 
and the nonlinearity may now be cancelled by the control 
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)cos(

1

2

2
1 v

xa
xu                                                            (42) 

Now this particular transformation is invertible for 
22 2


 x  and we can express  1x  and 2x  in terms of 1z  and 2z as 

follows, 
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To apply the integrator backstepping technique, we use the change of variables 
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Hence the origin is globally asymptotically stable and we obtain cV   defined in (57) as a CLF for the system (51). 
 
Discussions on the main limitation and future researches of the CLF approach   
 

The difficulty of the CLF scheme is to find a CLF because theory developed to find a CLF for a general nonlinear system 
has not appeared, but feedback linearization can be used to construct a CLF when the system dynamics can be transformed into a 
linear structure. Similarly, the integrator backstepping technique can be applied to generate a CLF whenever the system can be put 
into a cascade structure.  However, practical system designs of general applications are normally involved with various classes of 
nonlinear systems. This is the reason why the CLF approach is not popular to be used in real-life applications. We believe that the 
future studies regarding the CLF approach will focus on the theory development to find a CLF for other classes of nonlinear 
systems.  Once a CLF can be found for a general class of nonlinear system, researches on practical applications of this method to 
design feedback stabilizing control laws will be later conducted. 
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	 The difficulty of the CLF scheme is to find a CLF 

because theory developed to find a CLF for a general 

nonlinear system has not appeared, but feedback linear-

ization can be used to construct a CLF when the system 

dynamics can be transformed into a linear structure. 

Similarly, the integrator backstepping technique can be 

applied to generate a CLF whenever the system can be 

put into a cascade structure.  However, practical system 

designs of general applications are normally involved 

with various classes of nonlinear systems. This is the 

reason why the CLF approach is not popular to be used 
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nonlinear systems, researches on practical applications 
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	 In this paper reviews of synthesizing state feedback 

controller using the CLF method and the construction 

of CLFs for some special classes of nonlinear systems 

have been proposed. For practical implementation it is 

always difficult to find a CLF specifically for each nonlinear 

system. Due to the limitation of this method, it is rarely 

applied to design suboptimal controllers for practical 

nonlinear systems. Examples are presented to demon-

strate the construction of CLFs for a feedback linearizable 
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