กำลังอัดและโครงสร้างทางจุลภาคของจีโอโพลิเมอร์ที่สัมผัสอุณหภูมิสูง

Compressive Strength and Microstructures of Geopolymer Exposed to Elevated Temp

Authors

  • ธีรพล เสาวพันธ์
  • เกียรติสุดา สมนา

Keywords:

จีโอโพลีเมอร์ , เถ้าถ่านหิน , โซเดียมไฮดรอกไซด์ , อุณหภูมิ

Abstract

งานวิจัยนี้ศึกษากำลังรับแรงอัดและลักษณะโครงสร้างทางจุลภาคของจีโอโพลีเมอร์ที่สัมผัสอุณหภูมิสูง จีโอโพลิเมอร์สังเคราะห์จากเถ้าถ่านหินและกระตุ้นการเกิดปฏิกิริยาด้วยสารละลายโซเดียมไฮดรอกไซด์ที่ความเข้มข้น 14 โมลาร์ ใช้อัตราส่วนสารละลายต่อวัสดุประสานเท่ากับ 0.4 ตลอดการศึกษา หลังจาก 24 ชั่วโมงนำตัวอย่างจีโอโพลิเมอร์ไปสัมผัสอุณหภูมิ 40, 1100, 200, 400 และ 600 องศาเซลเซียส เป็นเวลา 30, 60, 90, 120 และ 180 นาทีและ ศึกษาการจำลองสภาพการณ์ของจีโอโพลิเมอร์หลังเกิดเพลิงไหม้ 3 กรณี ได้แก่ แช่น้ำ 24 ชั่วโมง แล้วสัมผัสอากาศ (WA) แช่น้ำตลอดเวลา (W) และสัมผัสอากาศตลอดเวลา (A) ศึกษาลักษณะโครงสร้างทางจุลภาคด้วย กล้องจุลทรรศน์แบบใช้แสง (OM), เครื่องส่องกราดลักษณะพื้นผิวของวัสดุ (SEM), วิเคราะห์โครงสร้างผลึก (XRD), เครื่องวิเคราะห์องค์ประกอบทางเคมีโดยใช้อิเลคตรอน (EDS), วิเคราะห์โครงสร้างทางเคมีของวัสดุ (FTIR) และวิเคราะห์พฤติกรรมทางความร้อน (TGA) และ ศึกษากำลังรับแรงอัดของจีโอโพลิเมอร์ที่อายุ 7 และ 28 วัน ผลการศึกษาพบว่า ค่ากำลังอัดของจีโอโพลิเมอร์ที่สัมผัสอุณหภูมิต่างๆ มีค่าเพิ่มขึ้นเมื่อเวลาการบ่มเพิ่มขึ้น กำลังอัดของจีโอโพลิเมอร์มีค่าสูงที่สุดเมื่อสัมผัสอุณหภูมิต่ำกว่า 200 องศาเซลเซียส กำลังอัดของจีโอโพลิเมอร์ขึ้นอยู่กับระยะเวลาการสัมผัสอุณหภูมิ กล่าวคือ เมื่ออุณหภูมิสูงขึ้นกำลังอัดมีค่าสูงเมื่อเวลาการสัมผัสอุณหภูมิลดลง การศึกษาลักษณะโครงสร้างทางจุลภาคผลิตภัณฑ์จากปฏิกิริยาจีโอโพลิเมอร์ ด้วยการใช้เครื่องส่องกราดลักษณพื้นผิวของวัสดุและเครื่องวิเคราะห์องค์ประกอบทางเคมีโดยใช้อิเลคตรอน พบพื้นผิวที่มีส่วนประกอบของธาตุซิลิกอน อะลูมิเนียม และโซเดียม เป็นองค์ประกอบ นอกจากนี้การศึกษาการวิเคราะห์พฤติกรรมทางความร้อน พบว่า จีโอโพลิเมอร์เมื่อสัมผัสความร้อนที่อุณหภูมิ 200 องศาเซลเซียส มีการเปลี่ยนแปลงเฟสของทุกผลิตภัณฑ์มากที่สุด   This research studied compressive strength and microstructure of geopolymer exposed to elevated temperatures. Geopolymer was synthesized from fly ash and activated with 14 molar sodium hydroxide solutions with constant liquid/binder ratio of 0.4 throughout the experiment. After 24 hours, the geopolymer samples were exposed to 40, 100, 200, 400 and 600 degree Celsius with duration times of 30, 60, 90, 120 and 180 min. There were three types of curing conditions after the exposure to elevated temperature which were: being immersed in water for a day then air cured (WA), being immersed in water throughout (W) and being air-cured throughout (A). Microstructures of geopolymer were characterized by optical microscope (OM), Scanning Electron Microscope (SEM), X-ray Diffractometer (XRD) and Energy Dispersive Spectroscopy (EDS), Fourier Transformed Infrared Spectrometer (FTIR) and Thermogravimetric Analysis (TGA) techniques and compressive strength was investigated at the age of 7 and 28 days.The results showed that the compressive strength of geopolymer after exposure to elevated temperature, increased with increasing curing age.The highest compressive strength was found when geopolymer was exposed to temperature less than 200 degree Celsius. The compressive strength of geopolymer also depended on the duration of exposure to temperatures. The compressive strength of the geopolymer increased when the duration to exposure of temperature decreased. A study on microstructure of geopolymer showed the geopolymerization products. The surface areas of geopolymer paste contained silicon, aluminium and sodium which were characterized by SEM-EDS techniques. In addition, geopolymer sample which were exposed to 200 degrees Celsius had the highest weight change which detected by TGA technic.

References

American Society for Testing and Materials, ASTM C618-08a. (2008). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Annual Book of ASTM Standard, Philadelphia; 04.02.2008.

Bakharev, T. (2005). Durability of geopolymer materials in sodium and magnesium sulfate solutions, Cement and Concrete Research, 35(6), 1233-1246.

Bakharev, T. (2006). Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing, Cement and Concrete Research, 36(6), 1134-1147.

Chindaprasirt, P., Chareerat, T. and Sirivivatnanon, V. (2007). Workability and strength of coarse high calcium fly ash geopolymer. Cement and Concrete Composites, 29(3), 224-229. (in Thai)

Clausi, M., Tarantino, S. C., Magnani, L. L., Riccardi, M. P., Tedeschi, C. and Zema M. (2016). Metakaolin as a precursor of materials for applications in Cultural Heritage: Geopolymerbased mortars with ornamental stone aggregates, Applied Clay Science, 132–133, 589–599.

Davidovits, J. (1999). Chemistry of geopolymeric systems, terminology. In: DavidovitsJ, Davidovits R, James C, editors. Géopolymère’99, Proceedings of Geopolymer Second International Conference, Saint-Quentin, 9-39.

Hui, B., Zhu, H., Cui, Xue, M., Yan, H., Gong and Yu, S. (2014). Applied Clay Science, 99, 144-148.

Jin, M., Zheng, Z., Sun, Y., Chen L. and Jin, Z. (2016). Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments. Journal of NonCrystalline Solids ,450, 116–122.

Khale, D. and Chaudhary, R. (2007). Mechanism of geopolymerization and factors influencing its development: a review, Journal of Materials Science, 47(3), 729-746.

Kumar, S. and Kumar, R. (2011). Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer. Ceramics International, 37, 533–541.

Lee, S., Riessenc, A. V., Chona, C., Kangb, N., Joud, H. and Kim, Y. (2016). Impact of activator type on the immobilisation of lead in fly ash-basedgeopolymer. Journal of Hazardous Materials 305, 59-66.

Liu, Y., Zhang, K., Feng, E., Zhao, H. and Liu, F. (2016). Synthesis of geopolymer composites from a mixture of ferronickel slag and fly ash. 17th IUMRS International Conference in Asia (IUMRS-ICA 2016).

Makul, N. and Chatveera, B. (2013). Properties of Fly Ash-based Geopolymer Mortar: Influence of Fly Ash Sources and Sodium Silicate (Na2SiO3) / Sodium Hydroxide (NaOH) Ratios, KMUTT Research and Development Journal, 36(1), 99-125. (in Thai)

Matsuda, A., Maruyama, I., Meawad, A., Pareek, S. and Araki, Y. (2019). Reaction, Phases, and Microstructure of Fly Ash-Based Alkali-Activated Materials, Journal of Advanced Concrete Technology, 17, 93-101.

Rahmadina, A. and Ekaputri, J. (2017). Mechanical Properties of Geopolymer Concrete Exposed to Combustion MATEC Web of Conferences, Vol. 138.

Rattanasak, U. and Chindaprasirt, P. (2009). Influence of NaOH solution on the synthesis of fly ash geopolymer, Minerals Engineering, 22(12), 1073-1078. (in Thai)

Rovnaník, P. (2010). Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials, 24, 1176-1183.

Sanawong, C., Somna, K. and Chalee, W. (2010). Compressive and Bond Strengths of Fly Ash-Based Geopolymer Concrete. BURAPHA SCIENCE JOURNAL,15(1), 13-22. (in Thai)

Shoaei, P., Musaeei, H.R., Mirlohi, F., zamanabadi, S.N., Ameri, F. and Bahrami, N. (2019). Construction and Building Materials, 227, 10 December 2019, 116686.

Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P. and Chindaprasirt, P. (2011). NaOH-activated ground fly ash geopolymer cured at ambient temperature, The Science and Technology of Fuel and Energy, 90, 2118-2124.

Somna, K. and Bumrongjaroen, W. (2011). Effect of External and Internal Calcium in Fly Ash on Geopolymer Formation, Developments in Strategic Materials and Computational Design II: Ceramic Engineering and Science Proceedings, 32,

Song, X.J., Marosszeky, M., Brungs, M. and Munn, R.(2005). Durability of fly ash based Geopolymer concrete against sulphuric acid attack, 10 DBMC International Conferences on Durability of Building Materials and Components, Lyon, France,

Thokchom, S., Ghosh, P. and Ghosh, S. (2009). Acid Resistance of Fly ash basedGeopolymer mortars, International Journal of Recent Trends in Engineering, 1(6), 36-40.

Timakul, P., Rattannaprasit, W. and Aungkavattana, P. (2016). Improvingcompressive-strengthof fly ash Based geopolymercomposites by basalt fibers addition. Ceramics Internationa, 142, 6288-6295.

Valencia, W. and De Gutiérrez, R.M. (2017). Performance of Geopolymer Concrete Composed of Fly Ash After Exposure to Elevated Temperatures. Construction and Building Materrials, 154, 229-235.

Downloads

Published

2022-11-30