ดัชนีเผาไหม้จากภาพถ่ายดาวเทียม Landsat 8 และข้อจำกัดในการใช้งาน

Burn indices from Landsat 8: Restrictions on Its Application

Authors

  • ธนพล ขำเรืองวงศ์
  • ดรุณวรรณ กำธรเกียรติ

Keywords:

ดัชนีเผาไหม้ , แลนด์แซท 8 , แม่ฮ่องสอน, ดัชนี dNBR , ดัชนี RdNBR

Abstract

ในการศึกษานี้ได้ประยุกต์กับภาพถ่ายจากดาวเทียมแลนด์แซท 8 (Landsat 8) ที่บันทึกในเดือนมีนาคมและเมษายน ปี 2559 ซึ่งเป็นเดือนที่มีการเผาไหม้สูงสุดในรอบปีของจังหวัดแม่ฮ่องสอน มาคำนวณดัชนีเผาไหม้ที่นิยมใช้จำนวน 5 ดัชนี ได้แก่ ดัชนี ดัชนี Normalized Burn Ratio (NBR) ดัชนี Normalized Burn Ratio Thermal (NBRT) ดัชนี Burn Area Index (BAI) ดัชนี Differenced Normalized Burn Ratio (dNBR) และดัชนี Relative differenced Normalized Burn Ratio (RdNBR) โดยมีวัตถุประสงค์เพื่อศึกษาศักยภาพ 3 ด้าน คือ 1) ด้านความแม่นยำในการวิเคราะห์พื้นที่ถูกเผาไหม้ ด้วยการนำมาหาความสอดคล้องกับพื้นที่เผาไหม้ในปี 2559 ในจังหวัดแม่ฮ่องสอนที่วิเคราะห์โดยสำนักงานพัฒนาเทคโนโลยีอวกาศและภูมิสาร สนเทศ (องค์การมหาชน) ที่นำมาใช้เป็นแหล่งอ้างอิง 2) ด้านความละเอียดในการแยกพื้นที่เผาไหม้ตามระดับความรุนแรงของการเผาไหม้ และ 3) การวิเคราะห์ประเภทการใช้ประโยชน์ที่ดินที่ได้รับผลกระทบหรือเป็นพื้นที่ที่ถูกเผาไหม้ ผลการศึกษา พบว่า ดัชนี dNBR และดัชนี RdNBR มีความแม่นยำร้อยละ 67 และ 64 ตามลำดับ ในการวิเคราะห์พื้นที่ถูกเผาไหม้เมื่อเปรียบเทียบกับข้อมูลจากแหล่งอ้างอิง และทั้งสองดัชนีมีศักยภาพในการจำแนกระดับความรุนแรงของการเผาไหม้ได้ 5 ระดับ แต่ดัชนี RdNBR ยังมีข้อจำกัดในการแยกระดับความรุนแรงของการเผาไหม้ได้ไม่ค่อยชัดเจน ในขณะที่ดัชนีอื่นนั้นสามารถแยกพื้นที่ถูกเผาไหม้และไม่ถูกเผาไหม้ได้ แต่มีความแม่นยำน้อยกว่า ส่วนความน่าเชื่อถือในการวิเคราะห์พื้นที่ที่ได้รับผลกระทบจากการเผาไหม้ของแต่ละดัชนี พบว่า ดัชนี RdNBR มีความน่าเชื่อถือมากที่สุด โดยแสดงการซ้อนทับกับแหล่งน้ำและพื้นที่สิ่งปลูกสร้างและอื่น ๆ ซึ่งเป็นพื้นที่ที่ไม่น่าจะถูกเผาไหม้น้อยที่สุด ผลจากการศึกษานี้ จะมีประโยชน์แก่ผู้สนใจหรือหน่วยงานที่เกี่ยวข้องในการเลือกใช้และพัฒนาดัชนีเผาไหม้ต่อไป   This study aims to understand the widely potential use of burn indices; Normalized Burn Ratio (NBR), Normalized Burn Ratio Thermal (NBRT), Burn Area Index (BAI), Differenced Normalized Burn Ratio (dNBR), and Relative differenced Normalized Burn Ratio (RdNBR). Landsat 8 imageries recorded in March and April 2016, the peak of burning period in Mae Hong Son Province are investigated. Three aspects were analyzed; 1) the accuracy  or consistency of mapping burned area compared to the reference burned area in 2016 reported by Geo-Informatics and Space Technology Development Agency (Public Organization) or GISTDA 2) the burn severity and 3) the identification of burn impacted land uses/land covers. Results from this study show that NBR and RdNBR had higher corresponded (around 60%) to the reference than other burned indices. Five burn severity levels; Enhanced Regrowth, Unburnt, Low Severity, Moderate Severity and High Severity were identified clearly by dNBR. Although RdNBR could be used to classify 5 level of burn severity, but some overlapping between classes were found. Other indices may applicable in separating burn and unburnt areas but they have poor classification ability on burn severity levels. Identifying burnt impacted areas, RdNBR presented the most reliable differentiation of water bodies and built-up and others in compare with other indices. The results from this study can be benefit to those interested researchers and related agencies in selecting the suitable identification of burn index for further use or developing techniques.

References

Cardil, A., Mola-Yudego, B., Blázquez-Casado, A., & González-Olabarria, J. R. (2019). Fire and burn severity assessment: Calibration of Relative Differenced Normalized Burn Ratio (RdNBR) with field data. J Environ Manage, 235, 342-349. https://doi.org/10.1016/j.jenvman.2019.01.077

Chen, W., Moriya, K., Sakai, T., Koyama, L., & Cao, C.X. (2016). Mapping a burned forest area from Landsat TM data by multiple methods, Geomat Nat Haz Risk, 7 (1), 384-402, DOI: 10.1080/19475705.2014.925982

Chuvueco, E., Martin, M.P., & Palacios, A. (2002). Assessment of different spectral indices in the red–near-infrared spectral domain for burned land discrimination. Int. J. Remote Sens., 23 (23), 5103- 5110. https://doi.org/10.1080/01431160210153129

Collins, L., Griffioen, P., Newell, G., & Mellor, A. (2018). The utility of Random Forests for wildfire severity mapping. Remote Sens. Environ., 216, 374-384. https://doi.org/10.1016/j.rse.2018.07.005

Department of National Parks, Wildlife and Plant Conservation, (2020). Fire statistics 2019. Retrieved May 22, 2020, from http://portal.dnp.go.th/Content/firednp?contentId=15705

ENVI. (2019). Burn Indices Tutorial. Retrieved Jan 21, 2020, from https://bit.ly/3gSY35V

Epting, J., Verbyla, D., & Sorbel, B. (2005). Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ., 3 (4), 328- 339. https://doi.org/10.1016/j.rse.2005.03.002

Escuin, S., Navarro, R., & Fernández, P. (2008). Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens., 29 (4), 1053-1073. https://doi.org/10.1080/01431160701281072

Fornacca, D., Ren, G., & Xiao, W. (2018). Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China. Remote Sensing ,10 (8), 1196. DOI: 10.3390/rs10081196

GISTDA. (2015). Manual of Using Geoinformatics data for fire and smoke monitoring. Retrieved September 30, 2019, from https://bit.ly/3jeJE79

GISTDA. (2016). Summary of forest fires and haze in 2016 from MODIS satellite systems and area burned from Landsat -8. Retrieved September 30, 2019, from http://fire.gistda.or.th/fire_report/Fire_2559.pdf

GISTDA. (2020). Fire Report 2559 - 63. Retrieved June 15, 2020, from http://fire.gistda.or.th/fire_report/

Harris Geospatial Solutions, Inc. (2018). Burn Indices Tutorial. Retrieved October 14, 2019, from https://bit.ly/3j2M9sL

Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int J Wildland Fire, 18 (1), 116–126. https://doi.org/10.1071/WF07049

Klinger, R.C., McKinley, R., Brooks, M.L. (2019). An evaluation of remotely sensed indices for quantifying burn severity in arid ecoregions. Int J Wildland Fire, 28 (12), 951-968. https://doi.org/10.1071/WF19025

Maehongson Provincial Office (2018). Geographic & Climate. Retrieved June 10, 2018, from http://www.maehongson.go.th/en/about-us/geographic-climate.html

Miller, J. D., & Thode, A. E. (2007). Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ., 109 ,66–80. https://doi.org/10.1016/j.rse.2006.12.006

Liu, S., Zheng, Y., Dalponte, M., & Tong, X. (2020). A novel fire index-based burned area change detection approach using Landsat-8 OLI data.Eur. J. Remote Sens., 53 (1), 104-112 https://doi.org/10.1080/22797254.2020.1738900

Rozario, P., Madurapperuma, B., & Wang, Y. (2018). Remote Sensing Approach to Detect Burn Severity Risk Zones in Palo Verde National Park, Costa Rica.Remote Sensing ,10 (9), 1427. DOI: 10.3390/rs10091427

Schepers, L., Haest, B., Veraverbeke, S., Spanhove, T., Vanden Borre, J., & Goossens, R. (2014). Burned Area Detection and Burn Severity Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX). Remote Sensing ,6 (3), 1803–1826. DOI: 10.3390/rs6031803

Tran, B., Tanase, M., Bennett, L., & Aponte, C. (2018). Evaluation of Spectral Indices for Assessing Fire Severity in Australian Temperate Forests.Remote Sensing ,10 (11), 1680. DOI: 10.3390/rs10111680

USGS. (2019). Landsat Normalized Burn Ratio. Retrieved October 14, 2019, from https://on.doi.gov/3zWrE7o

Veraverbeke, S., Lhermitte, S., Verstraeten, W.W., & Goossens, R. (2010). The temporal dimension of differenced Normalized Burn Ratio (dNBR) fire/burn severity studies: The case of the large 2007 Peloponnese wildfires in GreeceS.Remote Sens. Environ., 114, 2548–2563. DOI: 10.1016/j.rse.2010.05.029

Wang, S., Baig, M. H. A., Liu, S., Wan, H., Wu, T., & Yang, Y. (2018). Estimating the area burned by agricultural fires from Landsat 8 Data using the Vegetation Difference Index and Burn Scar Index.Int J Wildland Fire, 27 (4):217-227. https://doi.org/10.1071/WF17069

Wasser, L., & Cattau, M. (2017). Lesson 4. Work with the Difference Normalized Burn Index – Using Spectral Remote Sensing to Understand the Impacts of Fire on the Landscape. In Earth Analytics Course: Learn Data Science. Retrieved August 24, 2019, from https://bit.ly/3gTvoxF

Downloads

Published

2022-11-30