การสร้างแคโรทีนอยด์ในรูปนาโนพาร์ติเคิลจากน้ำมันปาล์มดิบ สำหรับเร่งสีผิวปลาทอง (Carassius auratus)

Creation of Nanoparticle Carotenoid from Crude Palm Oil to Enhancing the Skin Color of Goldfish (Carassius auratus)

Authors

  • สิริพงษ์ วงศ์พรประทีป
  • พงศ์เชฏฐ์ พิชิตกุล

Keywords:

แคโรทีนอยด์ , ปลาทอง , นาโนพาร์ติเคิล , การเร่งสี , สารสี, carotenoid, goldfish, nanoparticle, enhancing color, pigmentation

Abstract

การเพาะเลี้ยงปลาสวยงามจำหน่ายเป็นอาชีพที่สามารถเพิ่มมูลค่าให้กับสินค้าได้เป็นอย่างดี โดยเฉพาะอย่างยิ่งปลาที่มีสีสันตามที่ตลาดต้องการ สารสีจากธรรมชาติถูกนำมาใช้ในการเพิ่มสีสันของปลาสวยงาม เนื่องจากปลาสวยงามไม่สามารถสร้างแคโรทีนอยด์ได้เอง จำเป็นต้องได้รับจากอาหารเท่านั้น แต่พบปัญหาเรื่องการเสื่อมสภาพของแคโรทีนอยด์ และความสามารถในการดูดซึม การศึกษานี้มุ่งเน้นในการพัฒนาการสร้างอนุภาคขนาดเล็กเพื่อเก็บกักแคโรทีนอยด์ จากปาล์มน้ำมันสำหรับเพิ่มสีผิวปลาทอง แคโรทีนอยด์ในขนาดนาโนพาร์ติเคิลถูกสร้างขึ้นโดยใช้กระบวนการก่อเกิด เจลแบบไอออนโนโทรปิก (ionotropic gelation) แบ่งสารผสมที่ได้ไปผ่านกระบวนการทำแห้งแบบแช่เยือกแข็ง จากนั้นถ่ายภาพด้วย Scanning electron microscopes (SEM) และใช้โปรแกรม Image J วัดขนาดอนุภาค พบว่ามีค่าเฉลี่ย ของ nanoparticle carotenoid (NPC) มีค่าเท่ากับ 131.56 ± 32.35 nm และแบ่งไปวิเคราะห์ขนาดและการกระจายตัวของอนุภาคด้วย Zetasizer พบว่ามีขนาดเฉลี่ย 177.567 ± 14.00 nm และมีค่าศักย์ไฟฟ้าที่ผิว (zeta potential) เท่ากับ -30.233 ± 0.702 mV เมื่อนำแคโรทีนอยด์ขนาดนาโนใช้เป็นแหล่งแคโรทีนอยด์ในอาหารปลาทอง 6 ระดับที่ความเข้มข้น 0, 100, 200, 300, 400 และ 500 μg kg-1 เมื่อเลี้ยงเป็นเวลา 8 สัปดาห์ วัดสีผิวด้วยระบบ CIE (L*, a*, b*) และ ระบบ (L*, c*, h*) ผลการทดลองพบว่าสารสกัดที่ระดับความเข้มข้น 500 μg kg-1 ให้สีผิวของปลาเข้มที่สุดอย่างมีนัยสำคัญ (p<0.05) โดยไม่มีผลกระทบต่ออัตราการรอดตาย อัตราการเจริญเติบโต รวมถึงผลกระทบข้างเคียงอื่นๆ ที่มีต่อสุขภาพปลา  Production and trade of ornamental fish are profitable because of their aesthetic value. Fish that have particular colors and shapes are supplied to fulfill customer orders. Natural pigment is added to the skin color of ornamental fish by feed but reduction in ability of pigment absorption can cause color deterioration. Development of nanoparticle carotenoid from crude palm oil was studied to enhance goldfish skin color. Carotenoid nanoparticles were created by an ionotropic gelation process. A prepared solution containing carotenoids was freeze-dried and captured by a Scanning Electron Microscope (SEM). Mean particle diameter was determined as 131.56 ± 32.35 nm with Image J program and particle size and electrical potential of the surfaces were assessed using a Zetasizer, mean diameter was 177.567±14.00 nm with electrical potential of -30.233 ± 0.702 mV. NPC was incorporated into the feed at 0, 100, 200, 300, 400 and 500 μg kg-1 feed and fed to goldfish for 8 weeks. Measurement of goldfish color was performed by the CIE (L*, a*, b*) and (L*, c*, h*) system. The goldfish skin color intensity measured by CIE had shown that the fish fed with 500 μg kg-1 containing significantly highest skin color (p<0.05) without interfering on growth rate, survival rate and other side effect was not observed.

References

Almeida, E. S., Carvalho, A. C. B., Soares, I. O. d. S., Valadares, L. F., Mendonça, A. R. V., Silva Jr, I. J., & Monteiro, S. (2019). Elucidating how two different types of bleaching earths widely used in vegetable oils industry remove carotenes from palm oil: Equilibrium, kinetics and thermodynamic parameters. Food Research International, 121, 785-797. doi:https://doi.org/10.1016/j.foodres.2018.12.061

AOAC. (2000). Official methods of analysis of AOAC International (William Horwitz Ed. 17th ed.).

Arpagaus, C., Collenberg, A., Rütti, D., Assadpour, E., & Jafari, S. M. (2018). Nano spray drying for encapsulation of pharmaceuticals. International Journal of Pharmaceutics, 546(1), 194-214. doi:https://doi.org/10.1016/j.ijpharm.2018.05.037

Badilli, U., Gumustas, M., Uslu, B., & Ozkan, S. A. (2018). Chapter 9 - Lipid-based nanoparticles for dermal drug delivery. In A. M. Grumezescu (Ed.), Organic Materials as Smart Nanocarriers for Drug Delivery (pp. 369-413): William Andrew Publishing.

Bandyopadhyay, P., Swain, S. K., & Mishra, S. (2005). Growth and dietary utilisation in goldfish (Carassius auratus Linn.) fed diets formulated with various local agro-produces. Bioresource Technology, 96(6), 731-740. doi:https://doi.org/10.1016/j.biortech.2004.06.018

Bell, N. A., Jeffrey, S., MacIsaac, J. L., & Colombo, S. M. (2019). The effect of lobster meal on the growth performance and pigmentation of the common goldfish (Carassius auratus). Aquaculture Reports, 13, 100187. doi:https://doi.org/10.1016/j.aqrep.2019.100187

Bjerkeng, B. (2008). Carotenoids in Aquaculture: Fish and Crustaceans. In G. Britton, S. Liaaen-Jensen, & H. Pfander (Eds.), Carotenoids: Volume 4: Natural Functions (pp. 237-254). Basel: Birkhäuser Basel.

Brum, A. A. S., Santos, P. P. d., Silva, M. M. d., Paese, K., Guterres, S. S., Costa, T. M. H., Rios, A. d. O. (2017). Lutein-loaded lipid-core nanocapsules: Physicochemical characterization and stability evaluation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 522, 477-484. doi:https://doi.org/10.1016/j.colsurfa.2017.03.041

Bundit, Y., Orapint, J., Nontavit, A., & Arunee, I. (2008). Utilization of Carotenoids in Fancy Carp (Cyprinus carprio). Journal of Fisheries Technology Research, 2(2), 44-54.

Chapman, F. A., & Miles, R. D. (2018). How Ornamental Fishes Get Their Color. 1-6. Retrieved from https://edis.ifas.ufl.edu/pdffiles/FA/FA19200.pdf

Chen, J., Li, F., Li, Z., McClements, D. J., & Xiao, H. (2017). Encapsulation of carotenoids in emulsion-based delivery systems: Enhancement of β-carotene water-dispersibility and chemical stability. Food Hydrocolloids, 69, 49-55. doi:https://doi.org/10.1016/j.foodhyd.2017.01.024

Chen, L., Yokoyama, W., Liang, R., & Zhong, F. (2020). Enzymatic degradation and bioaccessibility of protein encapsulated β-carotene nano-emulsions during in vitro gastro-intestinal digestion. Food Hydrocolloids, 100, 105177. doi:https://doi.org/10.1016/j.foodhyd.2019.105177

Chiu, M. C., de Morais Coutinho, C., & Gonçalves, L. A. G. (2009). Carotenoids concentration of palm oil using membrane technology. Desalination, 245(1), 783-786. doi:https://doi.org/10.1016/j.desal.2009.03.002

Christian, L. A., Zhao, J., & Wu, J.-W. (2018). Replacement of fish oil with palm oil: Effects on growth performance, innate immune response, antioxidant capacity and disease resistance in Nile tilapia (Oreochromis niloticus). PloS one, 13(4), 1-17. doi:10.1371/journal.pone.0196100

da Cunha, L., Besen, K. P., Ha, N., Uczay, J., Skoronski, E., & Fabregat, T. E. H. P. (2020). Biofloc technology (BFT) improves skin pigmentation of goldfish (Carassius auratus). Aquaculture, 522, 735132. doi:https://doi.org/10.1016/j.aquaculture.2020.735132

Das, A. P., & Biswas, S. P. (2016). Carotenoids and Pigmentation in Ornamental Fish. Aquaculture & Marine Biology, 4(4). doi:10.15406/jamb.2016.04.00093

Fairchild, M. D. (2013). Color Order Systems. In third (Ed.), Color Appearance Models (pp. 471): John Wiley & Sons, Ltd.

Gouveia, L., Rema, P., Pereira, O., & Empis, J. (2003). Colouring ornamental fish (Cyprinus carpio and Carassius auratus) with microalgal biomass. Aquaculture Nutrition, 9(2), 123-129. doi:10.1046/j.1365-2095.2003.00233.x

Hekimoglu, M. A., Fırat, M. K., Saka, Ş., Suzer, C., Kop, A., & Durmaz, Y. (2017). Effect of Supplemented Algal Carotenoid Diets on Skin Color of Tomato Clownfish, Amphiprion frenatus. Pakistan Journal of Zoology, 49, 663-668. doi:10.17582/journal.pjz/2017.49.2.663.668

Ho, A. L. F. C., Orlando Bertran, N. M., & Lin, J. (2013). Dietary Esterified Astaxanthin Concentration Effect on Dermal Coloration and Chromatophore Physiology in Spinecheek Anemonefish, Premnas biaculeatus. Journal of the World Aquaculture Society, 44(1), 76-85. doi:10.1111/jwas.12010

Lertsutthiwong, P., Noomun, K., Jongaroonngamsang, N., Rojsitthisak, P., & Nimmannit, U. (2008). Preparation of alginate nanocapsules containing turmeric oil. Carbohydrate Polymers, 74(2), 209-214. doi:https://doi.org/10.1016/j.carbpol.2008.02.009

Li, F., Huang, S., Lu, X., Wang, J., Lin, M., An, Y., . . . Cai, M. (2018). Effects of dietary supplementation with algal astaxanthin on growth, pigmentation, and antioxidant capacity of the blood parrot (Cichlasoma citrinellum × Cichlasoma synspilum). Journal of Oceanology and Limnology, 36(5), 1851-1859. doi:10.1007/s00343-019-7172-7

Mazzoli, A., & Favoni, O. (2012). Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by Scanning Electron Microscopy and image processing program. Powder Technology, 225, 65-71. doi:https://doi.org/10.1016/j.powtec.2012.03.033

Ng, W.-K. (2002). Potential of palm oil utilisation in aquaculture feeds. Asia Pacific journal of clinical nutrition, 11 Suppl 7, S473-476. doi:10.1046/j.1440-6047.11.s.7.7.x

Ninwichian, P., Chookird, D., & Phuwan, N. (2020). Effects of dietary supplementation with natural carotenoid sources on growth performance and skin coloration of fancy carp, Cyprinus carpio L. IFRO, 19(1), 167-181. Retrieved from http://jifro.ir/article-1-1940-en.html

Pestovsky, Y. S., & Martínez-Antonio, A. (2019). The Synthesis of Alginate Microparticles and Nanoparticles. Drug designing & intellectual properties international journal, 3(1), 293-327. doi:10.32474/DDIPIJ.2019.03.000155

Ping, T. Y., & Gwendoline, E. C. L. (2006). Identification of lutein in crude palm oil and evaluation of carotenoids at various ripening stages of the oil palm fruit. Oil palm research, 18, 189-197.

Ribeiro, J. A. A., Almeida, E. S., Neto, B. A. D., Abdelnur, P. V., & Monteiro, S. (2018). Identification of carotenoid isomers in crude and bleached palm oils by mass spectrometry. LWT, 89, 631-637. doi:https://doi.org/10.1016/j.lwt.2017.11.039

Rodriguez-Amaya, D. B., & Kimura, M. (2004). Harvestplus Handbook for Carotenoid Analysis. In Harvest Plus Technical Monograph 2. (2004-01-01 ed., pp. 58). Washington, DC and Cali: International Food Policy Research Institute (IFPRI) and International Center for Tropical Agriculture (CIAT).

Sergeev, G. B., & Klabunde, K. J. (2013). Chapter 9 - Organic Nanoparticles. In G. B. Sergeev & K. J. Klabunde (Eds.), Nanochemistry (Second Edition) (pp. 235-274). Oxford: Elsevier.

Silva, S. M., Sampaio, K. A., Ceriani, R., Verhé, R., Stevens, C., De Greyt, W., & Meirelles, A. J. A. (2013). Adsorption of carotenes and phosphorus from palm oil onto acid activated bleaching earth: Equilibrium, kinetics and thermodynamics. Journal of Food Engineering, 118(4), 341-349. doi:https://doi.org/10.1016/j.jfoodeng.2013.04.026

Silva, S. M., Sampaio, K. A., Ceriani, R., Verhé, R., Stevens, C., De Greyt, W., & Meirelles, A. J. A. (2014). Effect of type of bleaching earth on the final color of refined palm oil. LWT – Food Science and Technology, 59(2, Part 2), 1258-1264. doi:https://doi.org/10.1016/j.lwt.2014.05.028

Sun, X., Chang, Y., Ye, Y., Ma, Z., Liang, Y., Li, T., . . . Luo, L. (2012). The effect of dietary pigments on the coloration of Japanese ornamental carp (koi, Cyprinus carpio L.). Aquaculture, 342-343, 62-68. doi:https://doi.org/10.1016/j.aquaculture.2012.02.019

Suyom, J. C. (2020). Effect of light and dark background color on the growth of Nile tilapia (Oreochromis niloticus L.) fingerlings reared in aquaria. Turkish Journal of Fisheries and Aquatic Sciences, 8, 236-238.

Villar-Martínez, A. A. d., Orbe-Rogel, J. C., Vanegas-Espinoza, P. E., QuinteroGutiérrez, A. G., & Lara-Flores, M. (2013). The effect of marigold (Tagetes erecta) as natural carotenoid source for the pigmentation of goldfish (Carassius auratus L.). Research Journal of Fisheries and Hydrobiology, 8(2), 31-37. Retrieved from https://pdfs.semanticscholar.org/d8ea/bd1f490821b8100b4ce06b981c3e5cc3e2d7.pdf

Wallat, G. K., Lazur, A. M., & Chapman, F. A. (2005). Carotenoids of Different Types and Concentrations in Commercial Formulated Fish Diets Affect Color and Its Development in the Skin of the Red Oranda Variety of Goldfish. North American Journal of Aquaculture, 67(1), 42-51. doi:10.1577/FA03-062.1

Worranan, R., & Tanasait, N. (2015). Characterization of liposomes for transdermal drug delivery system. Thai Bulletin of Pharmaceutical Sciences, 10, 61-74. doi:https://doi.org/10.14456/tbps.2015.4

Yahia, E. M. (2018). Chemistry, Stability, and Biological Actions of Carotenoids. In E. M. Yahia (Ed.), Fruit and Vegetable Phytochemicals (pp. 1414). United Kingdom: Blackwell Publishing.

Yanar, M., Erçen, Z., Özlüer Hunt, A., & Büyükçapar, H. M. (2008). The use of alfalfa, Medicago sativa as a natural carotenoid source in diets of goldfish, Carassius auratus. Aquaculture, 284(1), 196-200. doi:https://doi.org/10.1016/j.aquaculture.2008.07.050

Yanong, R. P. E. (1999). Nutrition of Ornamental Fish. Veterinary Clinics of North America: Exotic Animal Practice, 2(1), 19-42. doi:https://doi.org/10.1016/S1094-9194(17)30138-X

Zou, Y., Jiang, Y., Yang, T., Hu, P., & Xu, X. (2012). 16 - Minor Constituents of Palm Oil: Characterization, Processing, and Application. In O.-M. Lai, C.-P. Tan, & C. C. Akoh (Eds.), Palm Oil (pp. 471-526): AOCS Press.

Downloads

Published

2022-09-29