การพัฒนากระบวนการผลิตไบโอแคลเซียมจากกระดูกปลาลูกผสมบึกสยาม

Development of Biocalcium Production Process from Hybrid Catfish (Pangasianodon gigas × Pangasianodon hypophthalmus) Bone

Authors

  • เจนจิรา นิเวศน์
  • เกรียงศักดิ์ เม่งอำพัน
  • วิจิตรา แดงปรก
  • กิตติมา ลีละพงศ์วัฒนา
  • สุธาสินี ญาณภักดี
  • ธีระพล เสนพันธุ์

Keywords:

กระดูกปลา , กระบวนการ, ไบโอแคลเซียม , ปลาลูกผสมบึกสยาม, biocalcium, process, fish bone , hybrid catfish

Abstract

ไบโอแคลเซียมจากกระดูกปลาเป็นผลิตภัณฑ์แคลเซียมชนิดอินทรีย์ที่มีคุณภาพสูง การวิจัยนี้มีวัตุประสงค์เพื่อพัฒนากรรมวิธีการผลิตไบโอแคลเซียมจากกระดูกปลาลูกผสมบึกสยาม (Pangasianodon gigas x Pangasianodon hypophthalmus) ประกอบด้วย 4 ขั้นตอนต่อเนื่องกันดังนี้ 1) กระบวนการฉีดน้ำแรงดันสูง 2) กระบวนการแช่ในสารละลายด่าง 3) กระบวนการแช่ในตัวทำละลายเอทานอล 4) กระบวนการฟอกสีแล้วบดให้เป็นผงไบโอแคลเซียม จากนั้นนำกระดูกปลาจากทั้ง 4 กระบวนการข้างต้นไปวิเคราะห์ ร้อยละผลผลิต องค์ประกอบทางเคมี ค่าสี การเกิดปฏิกิริยาออกซิเดชันของไขมัน และโครงสร้างทางจุลภาค พบว่าผงไบโอแคลเซียมที่ได้มีร้อยละผลผลิตเท่ากับ 14.466 % นอกจากนี้ผงไบโอแคลเซียมมีปริมาณโปรตีน ไขมัน และความชื้นลดลง แต่กลับมีปริมาณเถ้า และค่าความสว่าง (L*) เพิ่มขึ้น (p ≤ 0.05) อย่างไรก็ตามกระบวนการแช่กระดูกปลาในตัวทำละลายเอทานอลและฟอกสีแล้วบดให้เป็นผงไบโอแคลเซียมจะทาให้มีค่า Thiobarbituric acid-reactive substances (TBARS) ลดลงอย่างมาก (p ≤ 0.05) เมื่อเปรียบเทียบกับกระบวนการก่อนหน้า และผงไบโอแคลเซียมที่ได้มีลักษณะเป็นก้อนขนาดเล็กขนาดประมาณ 2-10 ไมโครเมตร กระจายตัวอย่างสม่ำเสมอ ดังนั้นกระบวนการข้างต้นมีความเหมาะสมที่จะทำให้ได้มาซึ่งผง ไบโอแคลเซียมที่มีคุณภาพดี เป็นผงละเอียด มีสีขาวบริสุทธ์ ปราศจากกลิ่นคาวและกลิ่นเหม็นหืนสามารถนำไปพัฒนาเป็นผลิตภัณฑ์อาหารเสริมแคลเซียมได้ Biocalcium from fish bones is a high quality of organic calcium product. The objective of this research was to develop a process for biocalcium production from hybrid catfish (Pangasianodon gigas x Pangasianodon hypophthalmus) bones including 4 steps: 1) high pressure water jet process 2) soaking in alkaline solution 3) ethanol immersion process and 4) bleaching and grinding to obtain biocalcium powder. %Yield, chemical composition, color values, lipid oxidation and the microstructure of all fish bone processes were analyzed. Obtained biocalcium had %yield of 14.46%. In addition, bio-calcium had a low protein, fat and moisture contents but increasing in ash content and the lightness values (L *) were observed (p ≤ 0.05). However, the process of ethanol immersion, bleaching and grinding to obtain biocalcium powder decreased in Thiobarbituric acid-reactive substances (TBARS) values (p ≤ 0.05) compared to the previous process. The particle sizes of biocalcium powder were in a range of 2-10 μm and distributed uniformly. Therefore, biocalcium production process of this study was suitable process to obtain a good quality biocalcium of fine powder, white color, without fishy and rancid odor. It can be developed as a calcium supplement in the further.

References

AOAC, 2000. Official methods of analysis. Association of Official Analytical Chemists. Washington DC.

Batista, I., 1999. Recovery of proteins from fish waste products by alkaline extraction. European Food Research and Technology, 210(2), 84-89.

Baümler, E. R., M. E. Carrín & A. A. Carelli, 2016. Extraction of sunflower oil using ethanol as solvent. Journal of Food Engineering, 178, 190-197.

Benjakul, S., S. Mad-Ali, T. Senphan & P. Sookchoo, 2017. Biocalcium powder from precooked skipjack tuna bone: Production and its characteristics. Journal of Food Biochemistry, 41(6), 1-8. cooked skipjack tuna bone as affected by different treatments. Waste and Biomass Valorization, 9(8), 1369-1377.

Buege, J. A. & S. D. Aust, 1978. Microsomal lipid peroxidation Methods in enzymology. Elsevier, 52, 302-310.

Cascant, M. M., C. Breil, S. Garrigues, M. de la Guardia, A. S. Fabiano-Tixier & F. Chemat, 2017. A green analytical chemistry approach for lipid extraction: computation methods in the selection of green solvents as alternative to hexane. Analytical and Bioanalytical Chemistry, 409(14), 3527-3539.

Cross, K. J., N. L. Huq, J. E. Palamara, J. W. Perich & E. C. Reynolds, 2005. Physicochemical characterization of casein phosphopeptide-amorphous calcium phosphate nanocomplexes. Journal of Biological Chemistry, 280(15), 15362-15369.

Hoyle, N. T. & J. H. Merritt, 1994. Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of food Science, 59(1), 76-79.

Idowu, A. T., S. Benjakul, S. Sinthusamran, T. Sae-leaw, N. Suzuki, Y. Kitani & P. Sookchoo, 2020. Effect of alkaline treatment on characteristics of bio-calcium and hydroxyapatite powders derived from salmon bone. Applied Sciences, 10(12), 1-12.

Logesh, A., M. Pravinkumar, S. Raffi & M. Kalaiselvam, 2012. Calcium and phosphorus determination in bones of low value fishes, Sardinella longiceps (Valenciennes) and Trichiurus savala (Cuvier), from Parangipettai, Southeast Coast of India. Asian Pacific Journal of Tropical Disease, 2, 254-256.

Luu, P. & M. Nguyen, 2009. Recovery and utilization of calcium from fish bones byproducts as a rich calcium source. Journal of Science and Technology-Vietnam Academic of Science and Technology, 47(6), 91-103.

Murakami, F. S., P. O. Rodrigues, C. M. T. d. Campos & M. A. S. Silva, 2007. Physicochemical study of CaCO3 from egg shells. Food Science and Technology, 27(3), 658-662.

Panase, P. & K. Mengumphan, 2015. Growth performance, length-weight relationship and condition factor of backcross and reciprocal hybrid catfish reared in net cages. International Journal of Zoological Research, 11(2), 57-64.

Shi, P., M. Liu, F. Fan, C. Yu, W. Lu & M. Du, 2018. Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Materials Science and Engineering, 90, 706-712.

Spiro, M. & W. P. Griffith, 1997. The mechanism of hydrogen peroxide bleaching. Textile Chemist and Colorist, 29(11), 12-13.

Suwansakornkul, P. & Jongrittiporn, S. (2012). Value-added Products from Processing Waste of Pla Mong (Pangasius bocourti). (1/2012). Fishery Technological Development Division: Department of Fisheries. (in Thai)

Vázquez, J. A., I. Rodríguez-Amado, M. I. Montemayor, J. Fraguas, M. D. P. González & M. A. Murado, 2013. Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: Characteristics, applications and eco-friendly processes: A review. Marine Drugs, 11(3), 747-774.

Downloads

Published

2022-09-29