การศึกษาสมบัติทางโครงสร้างและทางแสงของฟิล์มซิงค์ออกไซด์ที่เตรียมด้วยการออกซิเดชันทางความร้อน ของฟิล์มซิงค์ที่เคลือบโดยวิธีสปัตเตอริง
Study of Structural and Optical Properties of ZnO Films Prepared by Thermal Oxidation of Sputtered Zn Films
Keywords:
ฟิล์มซิงค์ออกไซด์ , โครงสร้างนาโน , ออกซิเดชันทางความร้อน , อุณหภูมิออกซิเดชัน, ZnO films , nanostructure, thermal oxidation , oxidation temperatureAbstract
ในงานวิจัยนี้ฟิล์มซิงค์ออกไซด์ถูกเตรียมโดยการออกซิเดชันทางความร้อนของฟิล์มซิงค์ที่เตรียมโดยวิธีสปัตเตอริงอิทธิพลของอุณหภูมิออกซิเดชันและความหนาของฟิล์มซิงค์ต่อการเกิดโครงสร้างนาโนซึ่งรวมถึงโครงสร้างผลึกและลักษณะทางสัณฐานวิทยาของฟิล์มซิงค์ออกไซด์ถูกทำการตรวจสอบ ทั้งนี้โครงสร้างผลึก ลักษณะทางสัณฐานวิทยาพื้นผิว และการส่องผ่านทางแสงของฟิล์มซิงค์ออกไซด์ถูกทำการศึกษาโดยใช้การเลี้ยวเบนรังสีเอกซ์กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด และเครื่องสเปกโตรโฟโตมิเตอร์ ตามลำดับ ผลที่ได้พบว่าการเปลี่ยนแปลง โครงสร้างนาโน และโครงสร้างผลึกของฟิล์มซิงค์ออกไซด์ขึ้นกับอุณหภูมิออกซิเดชัน ลักษณะทางสัณฐานวิทยาของพื้นผิวฟิล์มซิงค์ออกไซด์เปลี่ยนแปลงจากเกล็ดนาโนเป็นทรงกลมนาโนด้วยการเพิ่มขึ้นของอุณหภูมิออกซิเดชันจาก 200 ºC เป็น 400 ºC และช่องว่างนาโนเกิดเพิ่มขึ้นด้วยการเพิ่มความหนาของฟิล์มซิงค์ที่อุณหภูมิออกซิเดชัน 800 ºC การเปลี่ยนแปลงโครงสร้างนาโนของฟิล์มซิงค์ออกไซด์จากอุณหภูมิออกซิเดชันอธิบายได้ด้วยกลไกการเติบโตจากการเปลี่ยนแปลงเฟสสถานะไอ-ของเหลว-ของแข็ง ในท้ายที่สุดฟิล์มซิงค์ออกไซด์ถูกนำไปทดสอบสภาพพื้นผิวความไม่ชอบน้ำ พบว่ามีค่ามุมสัมผัสหยดน้ำสูงสุดถึง 133.1º สำหรับอุณหภูมิออกซิเดชัน 800 ºC และความหนาฟิล์มซิงค์ 500 nm In this work, ZnO films were prepared by thermal oxidation of sputtered Zn films. Influences of oxidation temperature and thickness of Zn films on nanostructure, including crystal structure and surface morphology of ZnO films were investigated. The crystal structure, surface morphology, and optical transmittance of ZnO films were studied via X- ray diffraction (XRD), field emission scanning electron microscopy (FE- SEM), and UV- Vis spectrophotometer, respectively. It is clearly seen that the changing of nanostructure and crystal structure of ZnO films depended on the oxidation temperature. Surface morphology of ZnO films changed from nanoflakes to nanosphere with increasing the oxidation temperature from 200 ºC to 400 ºC. Furthermore, nanopore is enhanced when increasing the thickness of Zn films at oxidation temperature of 800 ºC. Changing of nanostructured ZnO films from the oxidation temperature is described with growth mechanism from vapor- liquid- solid (VLS) process. Moreover, optical transmittance of ZnO films exhibited transparence at oxidation temperature of 300 ºC and above. Finally, nanostructured ZnO films are tested for surface of hydrophobic property which showed the highest water contact angle at 133.1º for oxidation temperature of 800 ºC and 500 nm thickof Zn film.References
Ashraf, M., Champagne, P., Campagne, C., Perwuelz, A., Dumont, F., & Leriche, A. (2016) Study the Multi Self Cleaning Characteristics of ZnO Nanorods Functionalized Polyester Fabric. J. Ind. Text., 45(6), 1440-1456.
Aida, M.S., Tomasella, E., Cellier, J., Jacquet, M., Bouhssira, N., Abed, S. & Mosbah, A. (2006). Annealing and oxidation mechanism of evaporated zinc thin films from zinc oxide powder. Thin Solid Films, 515, 1494–1499.
Ahn, M.-W., Park, K.-S., Heo, J.-H., Park, J.-G., Kim, D.-W., Choi, K. J., Lee, J.-H. & Hong, S.-H. (2008). Gas sensing properties of defect-controlled ZnO-nanowire gas sensor. Appl. Phys. Lett., 93, 263103.
Flores-Garci´a, E., Gonza´ Lez-Garci´a P., Gonza´ Lez-Herna´ndez, J. & Rami´rez-Bon, R. (2018). Statistical Analysis of Sputter Parameters on the Properties of ZnO Thin Films Deposited by RF Sputtering. J. of Elec. Mat., 47(9), 5537-5547.
He Y., Yanagida T., Nagashima K., Zhuge F., Meng G., Xu B., Klamchuen A., Rahong S., Kanai M., Li X., Suzuki M., Kai S., & Kawai T. (2013). Crystal-plane dependence of critical concentration For nucleation on hydrothermal ZnO nanowires. J. Phys. Chem., 117(2), 1197–1203.
Khanlary, M. R., Vahedi, V. & Reyhani, A. (2012). Synthesis and Characterization of ZnO Nanowires by Thermal Oxidation of Zn Thin Films at Various Temperatures. Molecules, 17, 5021-5029.
Katayama, J., Ito, K., Matsuoka, M. & Tamaki, J. (2004). Performance of Cu2O/ZnO Solar Cell Prepared by Two-Step Electrodeposition. Journal of Applied Electrochemistry, 34, 687-692.
Kim M.S., Yim K.G., Choi H.Y., Cho M.Y., Kim G.S., Jeon S.M., Lee D.-Y., Kim J.S., Kim J.S., Son J.-S., Lee J.L., & Leem J.-Y. (2011). Thermal annealing effects of MBE-seed-layers on properties of ZnO nanorods grown by hydrothermal method. J. Cryst. Growth., 326(1), 195-199.
Li, Z.W., Gao, W. & Reeves, R. J. (2005). Zinc oxide films by thermal oxidation of zinc thin films. Surface & Coatings Technology, 198, 319–323.
Polsongkram D., Chamninok P., Pukird S., Chow L., Lupan O., Chai G. & Schulte A. (2008). Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Physica B: Condensed Matter., 403(19-20), 3713-3717.
Sheini, F. J., Joag, D. S. & More. M. A. (2011). Patterned Growth of ZnO Nanowire Arrays on Zinc Foil by Thermal Oxidation. International Scholarly and Scientific Research & Innovation, 5(2), 109-113.
Seveno, D., Blake, T. D. & Coninck J. D. (2013). Young’s Equation at the Nanoscale, Phys. Rev. Lett., PRL 111, 096101.
Tian, C., Zhang, Q., Wu, A., Jiang, M., Liang, Z., Jiang, B. & Fu, H. (2012). Cost-effective Large-scale Synthesis of ZnO Photocatalyst with Excellent Performance for Dye Photodegradation. Chem. Commun., 48,2858-2860.
Wahab, H.A., Salama, A.A., El-Saeid, A.A., Nur, O., Willander, M. & Battisha, I.K. (2013) Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique. Results in Physics., 3,46–51.
Wang, H., Ma, Q., Nui, H., Mao, X., Wan, L., Xu, J. & Miao, S. (2013). Hydrothermal Growth of Aligned ZnO Nanorods along the Seeds Prepared by Magnetron Sputtering and its Applications in Quantum Dots Sensitized Photovoltaic Cells. Journal Nanomater. Mol. Nanotechnol., 2, 678-689.
Yang, K.-Y., Yoon, K.-M., Choi, K.-W & Lee, H. (2009). The Direct Nano-patterning of ZnO using Nanoimprint Lithography with ZnO-sol and Thermal Annealing. Microelectron. Eng., 86, 2228-2231.