ผลเฉลยคาบของระบบสมการเชิงผลต่างเชิงเส้นเป็นช่วงที่มีเงื่อนไขเริ่มต้นในแกน x ทางบวก

Periodic Solution of a Piecewise Linear System of Difference Equations with Initial Condition in Positive X - Axis

Authors

  • สิริรัตน์ เกิดดิษฐ์
  • วิโรจน์ ติ๊กจ๊ะ

Keywords:

ระบบสมการเชิงเส้นเป็นช่วง , ผลเฉลยคาบ , จุดสมดุล, สมการเชิงผลต่าง , piecewise linear system , periodic solution , equilibrium point , difference equation

Abstract

ในบทความนี้ผู้วิจัยได้ศึกษาระบบสมการเชิงผลต่างเชิงเส้นเป็นช่วงที่มีเงื่อนไขเริ่มต้นเป็นแกน x ทางบวกซึ่งยังเป็นปัญหาปลายเปิด เราพบการมีอยู่จริงของ วง 5 และจุดสมดุล เราใช้การคำนวณด้วยการวนซ้ำและหลักอุปนัยเชิงคณิตศาสตร์ในการพิสูจน์ พฤติกรรมต่าง ๆ ของผลเฉลยของระบบสมการ เราทำการแบ่งแกน x ทางบวกออกเป็นช่วงย่อยและทำการค้นหาพฤติกรรมของผลเฉลยในแต่ละช่วงย่อย เราพบว่าสำหรับเงื่อนไขเริ่มต้นดังกล่าวตัวดึงดูดมีเพียง วง 5 หรือ จุดสมดุลเท่านั้นยิ่งกว่านั้นเรายังพบขอบเขตเบซินของการดึงดูดของวง 5 และจุดสมดุล In this paper, we study a piecewise linear system of difference equations with initial condition in positive xaxis whichremainsan open problem. We find that there exist 5-cycles and equilibrium point. We use some direct iterative calculations and mathematical induction to prove the behaviors of solutions of the system. We separate positive x-axis into subintervals and investigatethe behaviorsof solutions in each of subintervals. We also find that for such initial condition the attractors are only 5-cycles and equilibrium point. Moreover, we reveal the boundary of basins of attractions for 5-cycles and equilibrium point.

References

Banerjee, S., & Verghese, G.C. (2001). Nonlinear Phenomena in Power Electronics, Attractors, Bifurcations, Chaos, and Nonlinear Control. IEEE Press.

Botella-Soler, V., Castelo, J.M., Oteo, J.A., & Ros, J. (2011). Bifurcations in the Lozi map. Journal of Physics A, 44, 305101.

Brogliato, B. (1999). Nonsmooth mechanics models, dynamics and control. New York: Springer-Verlag.

Devanney, R.L., (1984). A piecewise linear model of the the zones of instability of an area-preservingmap. Physica., 10D, 387-393.

Gardini, L., & Tikjha, W. (2019). The role of virtual fixed points and center bifurcations in a Piecewise Linear Map. Int. J. Bifurcation and Chaos,29(14) doi: https://doi.org/10.1142/S0218127419300416

Gardini, L., & Tikjha, W. (2020). Dynamics in the transition case invertible/non-invertible in a 2D Piecewise Linear Map. Chaos, Solitons and Fractals, 137 (2020) https://doi.org/10.1016/j.chaos.2020.109813

Grove, E.A., & Ladas, G. (2005). Periodicities in Nonlinear Difference Equations, New York: Chapman Hall.

Grove, E.A., Lapierre, E.,& Tikjha, W. (2012). On the Global Behavior of Xn+1 = |Xn| - yn - ↿ and yn+1 = Xn + |yn|. Cubo Mathematical Journal,14, 125–166.

Ing, J., Pavlovskaia, E., Wiercigroch, M., & Banerjee, S. (2010). Bifurcation analysis of an impact oscillator with a one-sided elastic constraint near grazing, Physica D, 239, 312-321.

Jittbrurus, U., & Tikjha, W. (2020). Existence of Coexisting Between 5-cycle and Equilibrium Point on Piecewise Linear Map. Science and Technology NSRU Journal, 12(15), 39-47.

Krinket, S. and Tikjha, W. (2015). Prime period solution of cartain piecewise linear system of difference equation. Proceedings of the Pibulsongkram Research. (pp 76-83). (in thai)

Lozi, R. (1978). Un attracteur etrange du type attracteur de Henon. J. Phys. (Paris) 39,9-10.

Ma, Y., Agarwal, M. & Banerjee, S. (2006) Border collision bifurcations in a soft impact system. Phys. Lett. A, 354(4), 281-287.

Simpson, D. J. W. (2010). Bifurcations in piecewise-smooth continuous systems. World Scientific.

Simpson, D. J. W. (2014a) Sequences of Periodic Solutions and Infinitely Many Coexisting Attractors in the Border-Collision Normal Form, Int. J. Bifurcation and Chaos, 24(6), 1430018

Simpson, D. J. W. (2014b) Scaling Laws for Large Numbers of Coexisting Attracting Periodic Solutions in the Border-Collision Normal Form. Int. J. Bifurcation Chaos, 24(9), 1450118

Tikjha, W. & Gardini, L. (2020). Bifurcation sequences and multistability in a two-dimensional Piecewise Linear Map, Int. J. Bifurcation and Chaos,30(6), doi:S0218127420300141

Tikjha, W., & Lapierre, E. (2020). Periodic solutions of a system of piecewise linear difference equations. Kyungpook Mathematical Journal, 60(2), 401-413.

Tikjha, W., Lapierre, E.G., & Sitthiwirattham T. (2017). The stable equilibrium of a system of piecewise linear difference equations. Advances in Difference Equations67 (10 pages); doi:10.1186/s13662-017-1117-2

Tikjha, W., Lenbury, Y. & Lapierre, E.G. (2010). On the Global Character of the System of Piecewise Linear Difference Equations Xn+1 = |Xn| - yn - ↿ and yn+1 = Xn + |yn|. Advances in Difference Equations, 573281 (14 pages); doi:10.1155/2010/573281

Tikjha, W., Lapierre, E. G. & Lenbury, Y. (2015). Periodic solutions of a generalized system of piecewise linear difference equations. Advances in Difference Equations 2015:248 doi:10.1186/s13662-015-0585-5.

Tikjha, W., & Piasu, K. (2020). A necessary condition foreventually equilibrium or periodic to a system of difference equations. Journal of Computational Analysis and Applications, 28(2), 254 –261.

Zhusubaliyev, Zh.T., & Mosekilde, E. (2003). Bifurcations and Chaos in piecewise-smooth dynamical systems, Nonlinear Science A, Vol. 44, World Scientific.

Zhusubaliyev Zh. T, Mosekilde E. and Banerjee S. (2008). Multiple-attractor bifurcations and quasiperiodicicity in piecewise-smooth maps. Int. J. Bifurcation and Chaos,18(6), 1775–1789.

Downloads

Published

2022-09-29