วิตามินเอในอาหารสัตว์น้ำ

Dietary Vitamin A for Aquatic Animals

Authors

  • พิเชต พลายเพชร
  • จันทร์สว่าง งามผ่องใส

Keywords:

วิตามินเอ , เรตินอล , เรตินอยด์ , แคโรทีนอยด์ , สัตว์น้ำ, vitamin A, retinol, retinoid, carotenoid, aquatic animal

Abstract

วิตามินเอเป็นกลุ่มของสารอินทรีย์ที่ออกฤทธิ์คล้ายเรตินอลและมีบทบาทสำคัญต่อการมองเห็น การสร้างเซลล์ การพัฒนาของตัวอ่อนและระบบภูมิคุ้มกัน วิตามินเอมี 2 กลุ่ม คือ เรตินอยด์ เช่น เรตินอลและเรตินาล และแคโรทีนอยด์ เป็นที่สารตั้งต้นในการสังเคราะห์วิตามินเอ เช่น เบต้าแคโรทีน สัตว์น้ำสะสมวิตามินเอส่วนใหญ่ในตับในรูปเอสเตอร์ของ all-trans-retinol (วิตามิน A1 ) แล 3,4-dehydroretinol (วิตามิน A2 ) โดยปลาทะเลสะสมในรูปวิตามิน A1 เท่านั้น แต่ปลาน้ำจืดสะสมได้ทั้งสองรูปแบบ สัตว์น้ำที่ขาดแคลนวิตามินเอ (Hypovitaminosis A) แสดงอาการโรคที่จำเพาะคือตาบอด หรือตาโปน ส่วนการได้รับวิตามินเอในอัตราสูง (Hypervitaminosis A) ทำให้กระดูกผิดปกติโดยเฉพาะกระดูกสันหลัง ปริมาณวิตามินเอนิยมกำหนดเป็นหน่วย International Unit (IU) หรือ Retinol Equivalent (RE) ที่คิดเป็นปริมาณเรตินอล เท่ากับ 0.3 และ 1 ไมโครกรัม ตามลำดับ โรงงานผลิตอาหารสัตว์น้ำส่วนใหญ่ใช้เรตินิลอะซิเตตหรือเรตินิลปาล์มิเตต สังเคราะห์เป็นแหล่งวิตามินเอในอาหารทั้งรูปแบบวิตามินเดี่ยวหรือวิตามินรวม ปัจจุบัน มีการศึกษาเกี่ยวกับวิตามินเอในอาหารสัตว์น้ำมากขึ้นโดยเฉพาะในสัตว์น้ำวัยอ่อนและวัยรุ่น แต่ยังไม่สามารถระบุความต้องการวิตามินเอของสัตว์น้ำ หลายชนิดที่ศึกษาได้อย่างชัดเจน เนื่องจากระดับทดสอบมีความแตกต่างกันมาก ระดับทดสอบไม่เป็นสัดส่วนกัน หรือ ระดับทดสอบบางส่วนมีค่าสูงจนทำให้สัตว์น้ำได้รับผลกระทบจากภาวะ Hypervitaminosis A อย่างไรก็ตาม เมื่อพิจารณาจากงานวิจัยที่ผ่านมาและคำแนะนำต่างๆ ทำให้มีข้อสรุปเบื้องต้นได้ว่าอาหารกุ้งและปลาควรมีวิตามินเอที่คำนวณเป็นปริมาณเรตินอล อย่างน้อย 4,000 IU และไม่ควรเกิน 12,000 IU ต่อกิโลกรัม  Vitamin A is a group of organic matters biologically active like retinol and plays important roles on vision, cell formation, embryonic development and immune system. It consists of two groups which areretinoids i.e. retinol and retinal, and carotenoids being precursors for vitamin A synthesis i.e. beta-carotene. Aquatic animals mostly deposit vitamin A in liver as ester forms of all-trans-retinol (Vitamin A1) and 3,4-dehydroretinol (Vitamin A2). Marine fish deposits only A1, but both forms for freshwater fish. Vitamin A deficient aquatic animals (Hypovitaminosis A) show a unique clinical sign of blindness or exophthalmia, while excessive dietary intake (Hypervitaminosis A) causes bone deformity, especially spinal cord. Vitamin A quantity has been preferably determined as International Unit (IU) or Retinol Equivalent (RE) accounted for 0.3 and 1 microgram of retinol, respectively. Aquatic animal feed mills mostly use synthetic retinyl acetate or palmitate as dietary vitamin A source either a single or a vitamin premix form. Currently, there have been more studies about dietary vitamin A for aquatic animals, especially at young and juvenile stages, but requirements of those groups studied cannot be clearly specified. These are because of test levels were determined with high difference, nonproportion or some high values resulted in hypervitaminosis A. However, based on previous researches and recommendations, it can be preliminarily concluded that shrimp, prawn and fish diets should contain vitamin A calculated as retinol at least 4,000 IU and not above 12,000 IU per kilogram.

References

Ahmed, J.A., Dutta, D. & Nashiruddullah, N. (2016). Comparative efficacy of antioxidant retinol, melatonin, and zinc during in vitro maturation of bovine oocytes under induced heat stress. Turkish Journal of Veterinary and Animal Sciences, 40(4), 365-373.

Amitromach, E., Uni, Z., Cheled, S., Berkovich, Z. & Reifen, R. (2009). Bacterial population and innate immunity-related genes in rat gastrointestinal tract are altered by vitamin A-deficient diet. The Journal of Nutritional Biochemistry, 20(1), 70-77.

Aoe, H., Madsuda, I., Mimura, T., Sato, T. & Komo, A. (1968). Requirement of young carp for vitamin A. Nippon Suisan Gakkaishi, 33(10), 1068-1071.

Bender, D.A. (2009). The vitamins. In M.J. Gibney, S.A. Lanham-New, A. Cassidy & H.H. Vorster. (Eds.), Introduction to Human Nutrition. (Second edition). (pp. 147-202). NJ, USA: Wiley-Blackwell.

Campeche, D., Catharino, R.R., Godoy, H.T. & Cyrino, J.E.P. (2009). Vitamin A in diets for Nile tilapia. Scientia Agricola, 66(6), 751-756.

Chueapohak, W. (1999). Aquatic Animal Nutrition and Feeding Aquatic Animal. Bangkok, Thailand: Kasetsart University Press. (in Thai)

Combs, G.F. (2008). The vitamins, Fundamental Aspects in Nutrition and Health. (Third edition). MA, USA: Elsevier Academic Press.

Dedi, J., Takeuchi, T., Seikai, T. & Watanabe, T. (1995). Hypervitaminosis and safe levels of vitamin A for larval flounder (Paralichthys olivaceus) fed Artemia nauplii. Aquaculture, 133(2), 135-146.

Dedi, J., Takeuchi, T., Seikai, T., Watanabe, T. & Hosoya, K. (1997). Hypervitaminosis A during vertebral morphogenesis in larval Japanese flounder. Fisheries Science, 63(3), 466-473.

De Luca, L.M. (1982). Studies on mannosyl carrier function of retinol and retinoic acid in epithelial and mesenchymal tissues. Journal of the American Academy of Dertamology, 6(4) Part 2, 611-618.

EFSA. (2013). Scientific opinion on the safety and efficacy of vitamin A (retinyl acetate, retinyl palmitate and retinyl propionate) as a feed additive for all animal species and categories. EFSA Journal, 11(1), 3037.

Elomda, A.M., Saad, M.F., Saeed, A.M., Elsayed, A., Abass, A.O., Safaa, H.M. & Mehaisen, G.M.K. (2018). Antioxidant and developmental capacity of retinol on the in vitro culture of rabbit embryos. Zygote, 26(4), 326-332.

FAO. (2020). The State of World Fisheries and Aquaculture. Rome, Italy: Food and Agriculture Organization Headquarter.

FEFANA. (2014). Vitamins in Animal Nutrition. Brussels, Belgium: FEFANA Office.

Ghyasvand, T., Goodarzi, M.T., Amiri, I., Karimi, J. & Ghorbani, M. (2015). Serum levels of lycopene, betacarotene, and retinol and their correlation with sperm DNA damage in normospermic and infertile men. International Journal of Reproductive BioMedicine, 13(12), 787-792.

Gimenez, A.V.F., Díaz, A.C., Velurtas, S.M., Petriella, A.M. & Fenucci, J.L. (2008). Effects of different dietary vitamin A levels in the red shrimp Pleoticus muelleri (Bate, 1888) (Decapoda, Solenoceridae). Revista de Biología Marina y Oceanografía, 43(3), 483-490.

Glencross, B.D. (2006). The nutritional management of barramundi, Lates calcarifer -a review. Aquaculture Nutrition, 12(4), 291-309.

Guimarães, I.G., Lim, C., Yildirim-Aksoy, M., Li, M. & Klesius, P.H. (2014). Effects of dietary levels of vitamin A on growth, hematology, immune response and resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae. Animal Feed Science and Technology, 188, 126-136.

Guo, R., Lim, C., Xia, H., Yildirim-Aksoy, M., & Li, M. (2010). Effect of various dietary vitamin A levels on growth performance and immune response of tilapia (Oreochromis niloticus). Frontiers of Agriculture in China, 4(4), 507-512.

Hernandez, L.H.H, Teshima, S., Ishikawa, M., Koshio, S. & Tanaka, Y. (2004). Effects of dietary vitamin A on juvenile red sea bream Chrysophrys major. Journal of the World Aquaculture Society,35(4), 436-444.

Hernandez, L.H.H., Teshima, S., Ishikawa, M., Alam, S., Koshio, S. & Tanaka, Y. (2005). Dietary vitamin A requirements of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture Nutrition, 11(1), 3-9.

Hernandez, L.H.H., Teshima, S., Koshio, S., Ishikawa, M., Gallardo-Cigarroa, F.J., Alam, S., & Uyan, O. (2006). Effects of vitamin A palmitate, β-carotene and retinoic acid on the growth and incidence of deformities in larvae of red sea bream Chrysophrys major. Ciencias Marinas, 32(1B), 195-204.

Hernandez, L.H.H., Teshima, S., Ishikawa, M., Koshio, S., Gallardo-Cigarroa, F.J., Uyan, O. & Alam, S. (2009). Vitamin A effects and requirements on the juvenile kuruma prawn Marsupenaeus japonicus. Hidrobiológica, 19(3), 217-223.

Hilton, J.W. (1983). Hypervitaminosis A in rainbow trout (Salmo gairdneri): Toxicity signs and maximum tolerable level. The Journal of Nutrition,113(9), 1737-1745.

Hosokawa, H. (1989). The Vitamin Requirements of Fingerling Yellowtail, Seriola quinqueradiata. Kochi, Japan: Kochi University.

IAFFD. (2021). Aquaculture Species Nutritional Specifications Database (ASNS). Retrieved January 19, 2021, from http://www.iaffd.com.

Jain, J.L., Jain, N. & Jain, S. (2005). Fundamentals of Biochemistry. (Sixth edition). New Delhi, India: S. Chand & Company Ltd.

Jing, K., He, S., Chen, T., Lu, Y. & Ng, I.S. (2016). Enhancing beta-carotene biosynthesis and gene transcriptional regulation in Blakeslea trispora with sodium acetate. Biochemical Engineering Journal,114, 10-17.

Kitamura, S., Suwa, T., Ohara, S. & Nakagawa, K. (1967). Studies on vitamin requirements of rainbow trout. II. The deficiency symptoms of fourteen kinds of vitamins. Nippon Suisan Gakkaishi,33(12), 1120-1125.

Lian, X.Y., Chen, N.S., Wang, M.L., Yan, C.H. & Ding, G.T. (2017). Dietary vitamin A requirement of largemouth bass (Micropterus salmoides). Chinese Journal of Animal Nutrition, 29(10), 3819-3830.

Liang, M., Wenjuan, J., Qing, C. & Jialin, W. (2004). The effect of vitamin A supplementation in broodstock feed on reproductive performance and larval quality in Penaeus chinensis. Aquaculture Nutrition, 10(5), 295-300.

Liu, B., Zhao, Z., Brown, P.B., Cui, H., Xie, J., Habte-Tsion, H.M. & Ge, X. (2016). Dietary vitamin A requirement of juvenile Wuchang bream (Megalobrama amblycephala) determined by growth and disease resistance. Aquaculture, 450, 23-30.

McCullough, F.S., Northropclewes, C..A. & Thurnham, D.I. (1999). The effect of vitamin A on epithelial integrity. Proceedings of the Nutrition Society, 58(2), 289-293.

McDowell, L.R. (2000). Vitamins in Animal and Human Nutrition. (Second edition). IA, USA: Iowa State University Press.

Mohamed, J.S., Sivaram, V., Roy, T.S.C., Marian, M.P., Murugadass, M. & Hussain, M.R. (2003). Dietary vitamin A requirement of juvenile greasy grouper (Epinephelus tauvina). Aquaculture, 219(104), 693-701.

Mora, J.R., Iwata, M. & von Andrian, U.H. (2008). Vitamin effects on the immune system: vitamins A and D take centre stage. Nature Reviews Immunology, 8(9), 685-698.

Moren, M., Opstad, I., Berntssen, M.H.G., Zambonino Infante, J.L. & Hamre, K. (2004). An optimum level of vitamin A supplements for Atlantic halibut (Hipoglossus hipoglossus L.) juveniles. Aquaculture, 235(1-4), 587-599.

Nasiri, E., Mahmoudi, R., Bahadori, M.H. & Amiri, I. (2011). The effect of retinoic acid on In vitro maturation and fertilization rate of mouse germinal vesicle stage oocytes. Cell Journal (Yakhteh), 13(1), 19-24.

NRC. (1993). Nutrient Requirements of Fish. Washington D.C., USA: National Academy Press.

Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C.M., Clay, J., Folke, C., Lubchenco, J., Mooney, H. and Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405, 1017-1024.

Oliveira, L.M, Teixeira, F.M.E. & Sato, M.S. (2018). Impact of retinoic acid on immune cells and inflammatory diseases. Mediators of Inflammation, 3067126.

Ørnsrud, R., Graff, I.E., Høie, S., Totland, G.K. & Hemre, G.I. (2002). Hypervitaminosis A in the first-feeding fry of the Atlantic salmon (Salmo salar L.). Aquaculture Nutrition, 8(1), 7-13.

Ørnsrud, R., Lock, E.J., Waagbo, R., Krossøy, C. & Fjelldal, P.G. (2013). Establishing an upper level of intake for vitamin A in Atlantic salmon (Salmo salar L.) postsmolts. Aquaculture Nutrition, 19(5), 651-664.

Park, W.S., Kim, H.J., Li, M., Lim, D.H., Kim, J., Kwak, S.S., Kang, C.M., Ferruzzi, M.G. & Ahn, M.J. (2018). Two classes of pigments, carotenoids and C-phycocyanin, in spirulina powder and their antioxidant activities. Molecules, 23(8), 2065.

Plaipetch, P. (2014a). Nutritional researches on hybrid clariid catfish (Clarias macrocephalus x C. gariepinus). Journal of Science and Technology Kasetsart University, 3(2), 52-70. (in Thai)

Plaipetch, P. (2014b). Advances in nutritional researches on Asian sea bass Lates calcarifer (Bloch, 1790). KKU Research Journal, 19(4), 571-584. (in Thai)

Plaipetch, P. (2015). Nutritional management for nursing and culturing Pacific white shrimp (Litopenaeus vannamei Boone, 1931). Journal of Agriculture, 31(1),89-105. (in Thai)

Plaipetch, P. (2016). Nutritional management for culturing Nile tilapia (Oreochromis niloticus). Thammasat Journal of Science and Technology, 24(1),12-39. (in Thai)

Ravisankar, P., Reddy, A.A., Nagalakshmi, B., Koushik, O.S., Kumar, B.V. & Anvith, P.S. (2015). The comprehensive review on fat soluble vitamins. IOSR Journal of Pharmacy, 5(1), 12-28.

Rosenfeld, L. (1997). Vitamine-vitamin, the early years of discovery. Clinical Chemistry, 43(4), 680-685.

Rushton, W.A.H. (1966). Densitometry of pigments in rods and cones of normal and color defective subjects. Investigative Ophthalmology, 5(3), 233–241.

Saleh, G., Eleraky, W. & Gropp, J.M. (1995). A short note on the effects of vitamin A hypervitaminosis on health and growth of Tilapia nilotica (Oreochromis niloticus). Journal Applied Ichthyology, 11(304), 382-385.

Shao, L., Zhu, X., Yang, Y., Jin, J., Liu, H., Han, D. & Xie, S. (2016). Effects of dietary vitamin A on growth, hematology, digestion and lipometabolism of on-growing gibel carp (Carassius auratus gibelio var. CAS III). Aquaculture, 460, 83-89.

Shiau, S.Y. & Chen, Y. (2000). Estimation of the dietary vitamin A requirement of juvenile grass shrimp, Penaeus monodon. The Journal of Nutrition, 130(1), 90-94.

Signor, A.A. Signor, A., Signor, F.R.P., Boscolo, W.R., Feiden, A. & Vargus, L. (2018). Vitamin A supplemented diet for pacu fingerlings. Boletim do Instituto de Pesca,44(3), e331.

Taveekijakarn, P., Miyazaki, T., Matsumoto, M. & Arai, S. (1994). Vitamin A deficiency in cherry salmon. Journal of Aquatic Animal Health, 6(3), 251-259.

Tutas, L.B., Serrano Jr., A.E., Traifalgar, R.F.M. & Corre, V.L. (2013). Optimum dietary levels of Vitamin A (retinyl palmitate) for growth and reduction of incidence of operculum deformity in milkfish (Chanos chanos) fry. AACL Bioflux, 6(5), 464-469.

Van Muiswinkel, W.B. & Vervoorn-Van Der Wal, B. (2006). The immune system of fish. In P.T.K. Woo. (Eds.), Fish Diseases and Disorders. (Second edition). (pp. 678-702). England: CAB International Publishing.

Villeneuve, L., Gisbert, E., Le Delliou, H., Cahu, C.L. & Zambonino-Infante, J.L. (2005). Dietary levels of alltrans retinol affect retinoid nuclear receptor expression and skeletal development in European sea bass larvae. British Journal of Nutrition, 93(6), 791-801.

Villeneuve, L., Gisbert, E., Moriceau, J., Cahu, C.L. & Zambonino-Infante, J.L. (2006). Intake of high levels of vitamin A and polyunsaturated fatty acids during different developmental periods modifies the expression of morphogenesis genes in European sea bass (Dicentrarchus labrax). British Journal of Nutrition, 95(4),677-687.

Wang, J.L., Swartz-Basile, D.A., Rubin, D.C. & Levin, M.S. (1997). Retinoic acid stimulates early cellular proliferation in the adapting remnant rat small intestine after partial resection. The Journal of Nutrition, 127(7),1297-1303.

Wen, H., Yan, A.S., Gao, Q., Jiang, M. & Wei, Q. (2008). Dietary vitamin A requirement of juvenile Amur sturgeon (Acipenser schrenckii). Journal of Applied Ichthyology,24(5), 534-538.

WHO/FAO. (2004). Vitamin and Mineral Requirements in Human Nutrition. (Second edition). Hong Kong: SNP Best-set Typesetter Ltd.

Williams, K.C. & Rimmer, M.A. (2005). The future of feeds and feeding of marine finfish in the Asia-Pacific region: the need to develop alternative aquaculture feeds. In APFIC Regional Workshop on Low Value/Trash Fish in the Asia-Pacific Region. (pp. 223-233). Vietnam: Hanoi.

Wu, F., Zhu, W., Liu, M., Chen, C., Chen, J. & Tan, Q. (2016). Effects of dietary vitamin A on growth performance, blood biochemical indices and body composition of juvenile grass Carp (Ctenopharyngodon Idellus). Turkish Journal of Fisheries and Aquatic Sciences, 16, 339-345.

Downloads

Published

2022-09-29