การแจกแจงความน่าจะเป็นของความเข้มรังสีดวงอาทิตย์ในภาคตะวันออกของประเทศไทย

Probability Distribution of Solar Radiation Intensity in Eastern Part of Thailand

Authors

  • ศศิกานต์ ด่านวิหาร
  • ภารตี มหา
  • จุฑาพร เนียมวงษ์

Keywords:

การแจกแจงความน่าจะเป็นผสม , การทดสอบภาวะสารูปดี, ความเข้มรังสีดวงอาทิตย์, mixture probability distribution, goodness of fit test, solar radiation

Abstract

งานวิจัยนี้ศึกษาการแจกแจงความน่าจะเป็นของความเข้มรังสีดวงอาทิตย์ของจังหวัดในภาคตะวันออก ได้แก่จังหวัด ปราจีนบุรี ตราด ชลบุรี และสระแก้ว โดยสนใจศึกษาการแจกแจงความน่าจะเป็นปรกติ ล็อกนอร์มัล ไวบูล และแกมมา รวมไปถึงการศึกษาการแจกแจงความน่าจะเป็นผสม 2 องค์ประกอบ ใช้สถิติทดสอบแอนเดอร์สัน-ดาร์ลิง และเกณฑ์สารสนเทศ ของอะกะอิเกะ ในการพิจารณาทดสอบการแจกแจงที่เหมาะสมกับข้อมูล ผลการทดสอบพบว่า ข้อมูลค่าเฉลี่ยความเข้มรังสี ดวงอาทิตย์จังหวัดปราจีนบุรี ตราด และสระแก้ว มีการแจกแจงไวบูลผสม 2 องค์ประกอบ และ ข้อมูลค่าเฉลี่ยความเข้มรังสี ดวงอาทิตย์จังหวัดชลบุรี มีการแจกแจงแกมมาผสม 2องค์ประกอบ  In this research, we investigate probability distribution of solar radiation intensity in eastern provinces, i.e., Prachin Buri, Trat, Chon Buri, and Sa Kaeo. The probability distributions of interested are Normal, Lognormal, Weibull and Gamma distribution, including their two component mixture distribution. Anderson-Darling test and Akaike’s information criterion are applied to test the best fit of distribution to the data. The results show that the mean of solar radiation intensity of Prachin Buri, Trat and Sa Kaeo approximate to two component mixture Weibull distribution and that of Chon Buri follows two component mixture gamma distribution.

References

Akpinar, S., & Akpinar, E.K. (2009). Estimation of wind energy potential using finite mixture distribution Models. Energy Conversion and Management, 50(4), 877-884.

Alam, M.A., Emura, K. Farnham, C., & Yuan, J. (2018). Best-Fit Probability Distributions and Return Periods for Maximum Monthly Rainfall in Bangladesh. Climate, 6(9), 1-16.

Arthur, Y. D., & Gyamfi, K.B. (2013). Probability Distributional Analysis of Hourly Solar Irradiation in KumasiGhana. International Journal of Business and Social Research, 3(3), 63-75.

Bunterngchit, C. (2018). Simulation-based application in warehouse layout design for reducing material handling time. Kasem Bundit Engineering Journal, 8(3), 1-14. (in Thai)

Chang, T.P. (2010). Investigation on Frequency Distribution of Global Radiation Using Different Probability Density Functions. International Journal of Applied Science and Engineering, 8(2), 99-107.

Delignette-Muller, M., Dutang, C., Pouillot, R., Denis, J., & Siberchicot, A. (2020). Help to Fit of a Parametric Distribution to Non-Censored or Censored Data. Retrieved April 10, 2021, from https://cran.r-project.org/web/packages/fitdistrplus/fitdistrplus.pdf.

Department of Alternative Energy Development and Efficiency (2014). Solar energy. Alternative energy Encyclopedia, (pp. 32-33, 35, 38). Bangkok, Thailand. (in Thai)

Department of Alternative Energy Development and Efficiency (2017). Project of refining solar power potential map from satellite image of Thailand. Retrieved September 26, 2021, from https://www.dede.go.th/article_attach/developed_solarmap60%20-%20Copy.pdf. (in Thai)

Intarakumhang Na Rachasima, N., Arunotayanun, K. & Upayokin, A. (2020). Elevator Passenger Traffic and Demand Model Development in the Hospital Logistics Context. In Proceeding the 25th National Convention on Civil Engineering. (pp. TRL07-1 –8). (in Thai)

Jansuwan, J., Sirivongpaisal, N. & Kongkaew, W. (2019). Improving service performance of transportation department: A case study of Songklanagarind hospital. Thai journal of operation research, 7(1), 25-35. (in Thai)

Manoon, A., & Rahman, A. (2017). Selection of the best fit probability distribution to rainfall frequency analysis for Qatar. Nat Hazard,86, 281-296.

Petsawat, P. (2011). Investigation on probability distribution of global radiation at Bangkok province. Faculty of Science, Burapha University, Chon Buri. (in Thai)

R Core Team. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved March 26, 2021, from http://www.R-project.org/.

Rahman, A.S., Rahman, A., Zaman, M.A., Haddad, K., Ahsan, A., & Imteaz, M. (2013). A study on selection of probability distributions for at-site flood frequency analysis in Australia. Nat Hazard, 69, 1803-1813.

Sae-Ang, W. (2015). Process improvement proposal analysis using industrial simulation. Master thesis, Engineering Management, Faculty of Engineering, Burapha university. (in Thai)

Sarpong, S. (2019). Estimating the probability distribution of the exchange rate between Ghana Cedi and American dollar. Journal of King Saud University – Science,31, 117-183.

Singla, N., Jain, K., & Sharma, S.K. (2016). Goodness of fit test and power comparison for weighted gamma distribution. Revstat Statistical Journal,14(1), 29-48.

Wichitchan, S., Yao, W., & Yang, G. (2019). Hypothesis testing for finite mixture models. Computational Statistics and Data Analysis, 132, 180–189.

Young, D., Benaglia, T., Chauveau, D., Hunter, D., Elmore, R., Hettmansperger, T., Thomas, H., & Xuan, F. (2020). Tools for Analyzing Finite Mixture Models. Retrieved March 20, 2021, from https://cran.rproject.org/web/packages/mixtools/mixtools.pdf.

Yu, Y. (2018). Finite Mixture Modeling for Raw and Binned Data. Retrieved March 20, 2021, from https://cran.r-project.org/web/ packages/mixR/mixR.pdf.

Zhang, L., Li, Q., Guo, Y., Yang, Z., & Zhang L. (2018). An Investigation of wind direction and speed in a featured wind farm using joint probability distribution methods. Sustainability, 10(4338), 1-15.

Downloads

Published

2022-12-02