การตรวจวัดกลูตาไธโอนด้วยคัลลอริเมตริกเซนเซอร์โดยใช้สารประกอบเชิงซ้อนไดนิวเคลียร์ของคอปเปอร์ (II) กับอินดิเคเตอร์ไพโรแกลลอล เรด

Colorimetric Sensing of Glutathione by Copper (II) Complex with Pyrogallol Red Indicator

Authors

  • จอมใจ สุกใส
  • สรายุทธ เวชสิทธิ์

Keywords:

ไพโรแกลลอล เรด, สารประกอบเชิงซ้อนไดนิวเคลียร์ของคอปเปอร์ (II), กลูตาไธโอน, เอนเซมเบิล, pyrogallol Red , dinuclear copper (II) complex , glutathione, ensemble

Abstract

งานวิจัยนี้นำสารประกอบเชิงซ้อนไดนิวเคลียร์ของคอปเปอร์ (II) กับลิแกนด์ที่เป็นอนุพันธ์ของเมตาไซลีน (L) มาศึกษาการเลือกจับกับแอนไอออนชนิดต่าง ๆ โดยใช้ไพโรแกลลอล เรด เป็นหน่วยให้สัญญาณในสารละลาย HEPES buffer ความเข้มข้น 10 mM pH 6 พบว่าเอนเซมเบิลที่เตรียมจากสารประกอบ Cu2L2 และอินดิเคเตอร์ไพโรแกลลอล เรด (pyrogallol red หรือ PGR) มีความจำเพาะในการตรวจวัดกลูตาไธโอน (GSH) เนื่องจากมีเพียงกลูตาไธโอนเท่านั้นที่สามารถเปลี่ยนสี สารละลายของเอนเซมเบิล [Cu2L2 •PGR] จากสีน้ำเงินไปเป็นสีส้มซึ่งเป็นสีของอินดิเคเตอร์ PGR ขีดจำกัดการตรวจวัด กลูตาไธโอนด้วยเอนเซมเบิล [Cu2L2 •PGR] มีค่าเท่ากับ 0.85 µM นอกจากนี้ยังสามารถใช้เอนเซมเบิลดังกล่าวมาใช้ในการตรวจวัดหาปริมาณกลูตาไธโอนในยาประเภทแคปซูลได้  In this research, the dinuclear copper (II) complex containing m-xylene units (Cu2L2 ) was applied to study the sensing abilities towards anions using Pyrogallol Red (PGR) as sensory unit in 10 mM HEPES buffer pH 6. The results demonstrated that the [Cu2L2 •PGR] ensemble can be able to sense glutathione (GSH) selectively over than other anions, the color of [Cu2L2 •PGR] change from blue to orange color of PGR in the present of GSH. The detection limit of GSH was 0.85 µM. The proposed ensemble was successfully applied to determination of glutathione in drug capsule.

References

Butler, I. B., Schoonen, M. A. A. and Rickard, D. T. (1994). Removal of Dissolved Oxygenfrom Water : A Comparison of Four Common Techniques. Talanta, 41, 211-215.

Filomeni, G., Rotilio, G. and Ciriolo, M. R. (2005). Disulfide Relays and Phosphorylative Cascades: Partners in Redox-mediated Signaling Pathways. Cell Death and Differentiation 12, 1555–1563

Gao, W., Liu, Z., Qi, L., Lai, J., Kitte, S. A. and Xu, G. (2016). Ultrasensitive Glutathione Detection Based on Lucigenin Cathodic Electrochemiluminescence in the Presence of MnO2 Nanosheets. Analytical Chemistry, 88, 7654-7659.

Gaucher, C., Boudier, A., Bonetti, J., Clarot, I., Leroy, P. and Parent, M. (2018). Glutathione: Antioxidant Properties Dedicated to Nanotechnologies. Antioxidants, 7, 62.

Jia, R., Jin, K., Zhang, J., Zheng, X., Wang, S. and Zhang, J. (2020). Colorimetric and Fluorescent Detection of Glutathione Over Cysteine and Homocysteine with Red-emitting N-doped Carbon Dots. Sensors and Actuators B: Chemical, 321, 128506.

Freedman, J. H., Ciriolo, M. R. and Peisach, J. (1989). The Role of Glutathione in Copper Metabolism and Toxicity. The Journal of Biological Chemistry, 264, 5598-5605.

Kandar, R., Zakova, P., Lotkova, H., Kucera, O., and Cervinkova, Z. (2007). Determination of Reduced and Oxidized Glutathione in Biological Samples Using Liquid Chromatography with Fluorimetric Detection. Journal of Pharmaceutical and Biomedical Analysis, 43(4), 1382–1387. Kennedy, L., Sandhu, J. K., Harper, M.-E., and Cuperlovic-Culf, M. (2020). Role of Glutathione in Cancer: From Mechanisms to Therapies. Biomolecules, 10, 1429.

Liu, X., Wang, Q., Zhang, Y., Zhang, L., Sub, Y. and Lv, Y. (2013). Colorimetric Detection of Glutathione in Human Blood Serum Based on The Reduction of Oxidized TMB. New Journal of Chemistry, 37, 2174-2178.

Milne, L., Nicotera, P., Orrenius, S. and Burkitt, M. J. (1993). Effect of Glutathione and Chelating Agents on Copper-Mediated DNA Oxidaion: Pro-oxidant and Antioxidant Properties of Glutathione. Archives of Biochemistry and Biophysics, 304, 102-109.

Mischley, L. K., Standish, L. J., Weiss, N. S., Padowski, J. M., Kavanagh, T. J., White, C. C., and Rosenfeld, M. E. (2016). Glutathione as a Biomarker in Parkinson’s Disease: Associations with Aging and Disease Severity. Oxidative Medicine and Cellular Longevity, 2016.

Pokharel, U. R., Fronczek, F. R., and Maverick, A. W. (2014). Reduction of Carbon Dioxide to Oxalate by a Binuclear Copper Complex. Nature Communications, 5.

Stobiecka, M., Coopersmith, K. and Hepel, M. (2010). Resonance Elastic Light Scattering (RELS) Spectroscopy of Fast non-Langmuirian Ligand-Exchange in Glutathione-Induced Gold Nanoparticle Assembly. Journal of Colloid and Interface Science, 350, 168-177.

Teerasarunyanon, T., Watchasit, S., Suksai, C., Tuntulani, T. and Ruangpornvisuti, V. (2019). UV–vis and Theoretical Studies on an Ensemble of Dinuclear Cu(II) Complex of Anthracene–based Tripodal Tetramine with Pyrogallol Red for Cyanide Detection and Species Distribution in Aqueous Solution. Inorganic Chemistry Communications, 108, 107502.

Villarama, C. D. and Maibach, H. I. (2005). Glutathione as a Depigmenting Agent: An Overview. International Journal of Cosmetic Science, 27, 147–153.

Watchasit, S., Suktanarak, P., Suksai, C., Ruangpornvisuti, V. and Tuntulani, T. (2014). Discriminate Sensing of Pyrophosphate Using a New Tripodal Tetramine-based Dinuclear Zn(II) Complex Under an Indicator Displacement Assay Approach. Dalton Transactions, 43, 14701-14709.

Yu, Y., Shi, J., Zhao, X., Yuan, Z., Lu, C. and Lu, J. (2016). Electrochemiluminescence Detection of Reduced and Oxidized Glutathione Ratio by Quantum Dot-layered Double Hydroxide Film. Analyst, 141,3305-3312.

Downloads

Published

2022-12-02