ผลของโครงสร้างท่อนาโนไทเทเนียมไดออกไซด์ต่อปฏิกิริยาโฟโตแคตะไลติก ที่เตรียมโดยการแอโนไดเซชันจากฟิล์มไทเทเนียม
Effect of the Structure of a TiO2 Nanotube Arrays on Photocatalytic Activity Prepared by Anodization from Sputtered Ti Film
Keywords:
ท่อนาโนไทเทเนียมไดออกไซด์, ปฏิกิริยาโฟโตแคตะไลติก, สปัตเตอริง, แอโนไดเซชัน, titanium dioxide nanotubes , photocatalytic reaction , sputtering, anodizationAbstract
ท่อนาโนไทเทเนียมไดออกไซด์ถูกสังเคราะห์ผ่านกระบวนการแอโนไดเซชันจากฟิล์มไทเทเนียมที่เคลือบบนกระจก อินเดียมทินออกไซด์โดยเทคนิคดีซีแมกนีตรอนสปัตเตอริง ท่อนาโนไทเทเนียมไดออกไซด์ถูกสร้างขึ้นโดยใช้ศักย์ไฟฟ้า 30โวลต์ และสารละลายอิเล็กโตรไลต์ที่ประกอบด้วยแอมโมเนียมฟลูออไรด์ เอทิลีนไกลคอล และน้ำปราศจากไอออน 1 - 3 vol% โครงสร้างและสัณฐานวิทยาของท่อนาโนไทเทเนียมไดออกไซด์จะถูกตรวจสอบด้วยเครื่องเอ็กซ์เรย์ดิฟแฟกซ์โตรมิเตอร์ และกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดชนิดฟิวอิมิชชั่น ตามลำดับ ผลที่ได้แสดงให้เห็นว่าค่าเฉลี่ยของเส้นผ่านศูนย์กลางท่อ นาโนไทเทเนียมไดออกไซด์ที่เงื่อนไขปริมาณน้ำปราศจากไอออน 12 และ 3vol% จะมีค่า 45.63 55.30 และ 65.32 นาโนเมตร ตามลำดับ และขนาดผลึกของท่อนาโนไทเทเนียมไดออกไซด์หลังอบสามารถคำนวนได้จากสมการของเชอร์เรอร์ ได้ขนาดผลึก ระนาบ (004) เพิ่มขึ้นจาก 24.34 เป็น 29.53 และ 30.61 นาโนเมตร เมื่อปริมาณน้ำปราศจากไอออนเพิ่มขึ้น ในงานวิจัยพบว่า ท่อนาโนไทเทเนียมไดออกไซด์ที่เตรียมด้วยปริมาณน้ำปราศจากไอออน 3 vol% จะมีขนาดผลึกและเป็นระเบียบสูงสุด ซึ่ง โครงสร้างและขนาดของท่อเป็นปัจจัยที่สำคัญที่ส่งผลกระทบต่อปฏิกิริยาโฟโตแคตะไลติก โดยท่อนาโนไทเทเนียนมไดออกไซด์ ที่ได้จะถูกนำไปทดสอบการย่อยสลายสารละลายเมทิลีนบลูภายใต้การฉายรังสีที่เวลาต่างๆ พบว่าท่อนาโนไทเทเนียมไดออกไซด์ที่เงื่อนไขดีที่สุดสำหรับปฏิกิริยาโฟโตแคตะไลติกคือปริมาณน้ำปราศจากไอออน 3 vol% เนื่องจากพื้นที่ผิวและขนาดผลึกที่เพิ่มขึ้น In this research, titanium dioxide nanotubes (TNTs) were synthesized via an anodization process from titanium (Ti) film sputtered on indium tin oxide (ITO) glass by a DC magnetron sputtering technique. The TNTs were fabricated by using potential at 30 V and electrolyte solution consisted of ammonium fluoride (NH4F), ethylene glycol (EG), and deionized water at 1-3 vol%. The crystal and surface morphology of TNTs were characterized by an X-Ray Diffractometer (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM), respectively. The results showed that the average diameters of TNTs with deionized water of 1, 2, and 3 vol% were 45.63, 55.30, and 65.32 nm, respectively. The crystallite size of the annealed TNTs at (004) plane were calculated from the Scherrer equation, which increased from 24.34 nm to 29.53 and 30.61 nm with increasing percent by volume of deionized water. It was found that TNTs prepared with deionized water at 3 vol% showed the highest crystallite size and uniform diameter. The crystal structure and tubular size of TNTs are important factors that affect the photocatalytic reaction. The TNTs were tested for the degradation of methylene blue in an aqueous solution under various UV irradiation times. The best TNTs condition for photocatalytic activity was anodized with deionized water at 3 vol% due to an increase surface area and crystallite size.References
Alba, A-H., Carlos, Z-I., Julio César, M-C., Kleider, Johnson, J-P. (2020). A study of the effect of morphology on the optical and electrical properties of TiO2 nanotubes for gas sensing applications. The European Physical Journal Applied Physics, 90(3), 30102.
Chen, Y.J., & Dionysiou, D.D. (2006). Correlation of structural properties and film thickness to photocatalytic activity of thick TiO2 film coated on stainless steel. Appl. Catal, 69, 24-33.
Chen, C., Li, F., Li, G., Tan, F., Li, S., &Ling, L. (2013). Double-sided transparent electrodes of TiO2 nanotube arrays for highly efficient CdS quantum dot-sensitized photoelectrodes. Journal of Materials Science, 49 (4), 1868 –1874.
Chen, C.-N., Wang, Y.-W., Ho, Y.-R., Chang, C.-M., Huang, W.-C., & Huang, J.-J. (2021). Liquid phase deposition/anodizing of TiO2 nanotube working electrode for dye-sensitized solar cells. Materials Science in Semiconductor Processing, 131,105872.
Fan, L., Liang, G., Zhang, C., Fan, L., Yan, W., Guo, Y., Dong, C. (2021). Visible-light-driven photo electrochemical sensing platform based on BiOI nanoflowers/TiO2 nanotubes for detection of atrazine in environmental samples. Journal of Hazardous Materials, 409, 124894.
Gao, H., Shangguan, W., Hu, G., & Zhu, K. (2016). Preparation and photocatalytic performance of transparent titania film from monolayer titania quantum dots. Applied Catalysis B: Environmental, 180, 416–423
Gnida, P., Jarka, P., Chulkin, P., Drygała, A., Libera, M., Tański, T., & Schab-Balcerzak, E. (2021). Impact of TiO2 nanostructures on dye-sensitized solar cells performance. Materials, 14(7), 1633.
Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., Dickey, E.C., & Mater, J. (2001). Res, 16, 3331.
Hui, F.Z., Chang, J.L., Yue, K.I., Sun, L., & Li, J. (2007). Some critical structure factors of titanium oxide nanotubes arrays in its photocatalytic activity. Environ. Sci. Technol, 41,4735-4740.
Ji, L., Zhang, Y., Miao, S., Gong, M., & Liu, X. (2017). In situ synthesis of carbon doped TiO2 nanotubes with an enhanced photocatalytic performance under UV and visible light. Carbon, 125, 544–550.
Kaewwongsa, S. (2017). Preparation and characterization of CrZrN thin films deposited by reactive dc magnetron co - sputtering, Burapha University. (in thai)
Kang, X., Liu, S., Dai, Z., He, Y., Song, X., & Tan, Z. (2019). Titanium dioxide: from engineering to applications. Catalysts, 9(2), 191.
Liang, H., & Li, X. (2009). Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution. Journal of Hazardous Materials, 162 (2-3), 1415–1422.
Lim, S.L., Liu, Y., Li, J., Kang, E.-T., & Ong, C.K. (2011). Transparent titania nanotubes of micrometer length prepared by anodization of titanium thin film deposited on ITO. Applied Surface Science, 257(15), 6612–6617.
Lv, H., Li, N., Zhang, H., Tian, Y., Zhang, H., Zhang, X., & Li, Y. (2016). Transferable TiO2 nanotubes membranes formed via anodization and their application in transparent electrochromism. Solar Energy Materials and Solar Cells, 150, 57–64.
Lee, T., Lee, W., Kim, S., Lee, C., Cho, K., Kim, C., & Yoon, J. (2021). High chlorine evolution performance of electrochemically reduced TiO2 nanotube array coated with a thin RuO2 layer by the self-synthetic method. RSC Advances, 11(20), 12107–12116.
Matus, Z., Stepan, K., Radim, C., Sarka, P., Hana, K., Jan, T., Zdenek, H., Yalavarthi, R., Josef, K., Alberto, N., Patrik, S., Radek, Z. (2018). TiO2 nanotubes on transparent substrates: control of film microstructure and photo electrochemical water splitting performance. Catalysts, 8(1), 25.
Naduvath, J., Bhargava, P., & Mallick, S. (2015). Mechanism of titania nanograss formation during anodization, 626,15 -19.
Nguyen, H. H., Gyawali, G., Martinez-Oviedo, A., Kshetri, Y. K., & Lee, S. W. (2020). Physicochemical properties of Cr-doped TiO2 nanotubes and their application in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 397, 112514.
Perillo, P. M., & Rodríguez, D. F. (2021). Photocatalysis of methyl orange using free standing TiO2 nanotubes under solar light. Environmental Nanotechnology, Monitoring & Management, 16,100479.
Richter, C., & Schmuttenmaer, C.A. (2010). Exciton-like trap states limit electron mobility in TiO2 nanotubes. Nature Nanotechnology, 5(11), 769–772.
Regonini, D., Satka, A., Jaroenworaluck, A., Allsopp, D.W.E., Bowen, C.R., & Stevens, R. (2012). Factors influencing surface morphology of anodized TiO2 nanotubes. Electrochimica Acta, 74, 244–253.
Swinehart, D.F. (1962). The Beer-Lambert Law. Journal of Chemical Education, 39(7), 333.
Srimuangmak, K., & Niyomwas, S. (2011). Effects of voltage and addition of water on photocatalytic activity of TiO2 nanotubes prepared by anodization method. Energy Procedia, 9,435 - 439.
Simi, V.S., & Rajendran, N. (2017). Influence of tunable diameter on the electrochemical behavior and antibacterial activity of titania nanotubes arrays for biomedical applications. Materials Characterization, 129,67-79.
Sreekantan, S., & et al. (2009). Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization. Journal of Alloys and Compounds, 485 (1–2), 478-483.
Suhaimy, S.M., Lai, C., Tajuddin, H., Samsudin, E., & Johan, M. (2018). Impact of TiO2 nanotubes’ morphology on the photocatalytic degradation of simazine pollutant. Materials, 11(11), 2066.
Szkoda, M., Lisowska, A., Grochowska, K., Skowronski, L., Karczewski, J., & Siuzdak, K. (2016). Semi – transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate. Applied Surface Science, 381, 36-41.
Thomas, F., Thomas, C., Valérie, K., My Ali, E.K. (2020). Comparative study of the photocatalytic effects of pulsed laser deposited CoO and NiO nanoparticles onto TiO2 nanotubes for the photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 217, 110703.
Vera, M.L., Avalos, M.C., Rosenberger, M.R., Bolmaro, R.E., Schvezov, C.E., & Ares, A.E. (2017). Evaluation of the influence of texture and microstructure of titanium substrates on TiO2 anodic coatings at 60 V, 131, 348-358.
Wang, X., Li, Z., Xu, W., Kulkarni, S.A., Batabyal, S.K., Zhang, S., & Wong, L.H. (2015). TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy, 11, 728–735.
Xu, C., Rangaiah, G.P., & Zhao, X.S. (2014). Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study. Industrial & Engineering Chemistry Research, 53(38), 14641-14649.
Yang, D.J., Kim, H.G., Cho, S.J., & Choi, W.Y. (2008). IEEE Trans. Nanotechnol, 7,131.
Yang, P., & et al. (2016). Influence of H2O2 and H2O content on anodizing current and morphology evolution of anodic TiO2 nanotubes. Materials Research Bulletin, 83, 581-589.
Yuan, L., Wang, C., Cai, R., Wang, Y., Zhou, & G. (2013). Spontaneous ZnO nanowire formation during oxidation of Cu-Zn alloy. Journal of Applied Physics., 114,023512.
Zhang, W., Li, H., Hopmann, E., & Elezzabi, A. Y. (2020). Nanostructured inorganic electrochromic materials for light applications. Nanophotonics, 10(2), 825–850.