การใช้กรดไขมันเพื่อเป็นสารยับยั้งการกัดกร่อนสำหรับเหล็กกล้าคาร์บอนต่ำ

Fatty Acids as Corrosion Inhibitors for Low Carbon Steel

Authors

  • นวรัตน์ วรอวยชัย
  • อรรถพล ตะเระ

Keywords:

สารยับยั้งการกัดกร่อน , กรดไขมัน , กรดเฮกซะโนอิก , กรดออกตะโนอิก , เหล็กกล้าคาร์บอนต่ำ, corrosion inhibitor, fatty acid, hexanoic acid, octanoic acid, low carbon steel

Abstract

งานวิจัยนี้ศึกษาการใช้สารยับยั้งการกัดกร่อนในกลุ่มของกรดไขมันสำหรับกระบวนการทำความสะอาดเหล็กกล้า คาร์บอนต่ำในสารละลายที่เป็นกรด (acid picking) โดยใช้กรดไขมัน 2 ชนิด ได้แก่ กรดเฮกซะโนอิก (hexanoic acid; HA) และกรดออกตะโนอิก (octanoicacid; OA) ที่ความเข้มข้น 0, 1, 5 และ 20 มิลลิโมลาร์ในสารละลายกรดซัลฟิวริก 0.1 โมลาร์ จากผลการทดลองพบว่าค่าศักย์ไฟฟ้าการกัดกร่อน (corrosion potential; Ecorr ) ของเหล็กกล้าที่เติมกรดออกตะโนอิก มีแนวโน้มเลื่อนไปทางด้านลบหรือด้านแคโทดิก แสดงว่ากรดนี้เป็นสารยับยั้งการกัดกร่อนชนิดแคโทดิก (cathodic inhibitor) อีกทั้งสารยับยั้งการกัดกร่อนชนิดนี้ยังสามารถลดอัตราการกัดกร่อน (corrosion rate) ในทุกความเข้มข้น ในขณะที่อัตราการกัดกร่อนของเหล็กกล้าเมื่อเติมกรดเฮกซะโนอิกที่ความเข้มข้น 1 และ 5 มิลลิโมลาร์ มีแนวโน้มเพิ่มขึ้น อย่างไรก็ตามการใช้กรดเฮกซะโนอิกความเข้มข้น 20 มิลลิโมลาร์ในสารละลายกรดซัลฟิ วริก 0.1 โมลาร์ส่งผลให้ประสิทธิภาพการยับยั้งการกัดกร่อน เพิ่มขึ้นและลดอัตราการกัดกร่อนลงได้ โดยค่าศักย์ไฟฟ้าการกัดกร่อนของกรดเฮกซะโนอิกมีแนวโน้มเพิ่มขึ้นเล็กน้อย สำหรับ ประสิทธิภาพการยับยั้งการกัดกร่อน พบว่ากรดออกตะโนอิกความเข้มข้น 20 มิลลิโมลาร์ในสารละลายกรดซัลฟิวริก 0.1 โมลาร์มีประสิทธิภาพการยับยั้งการกัดกร่อนได้เท่ากับ 72.33 เปอร์เซ็นต์ และสามารถลดอัตราการกัดกร่อนได้ถึง 88.95 เปอร์เซ็นต์เมื่อเปรียบเทียบกับการไม่ใช้สารยับยั้งการกัดกร่อน   This research is to study the feasibility of two fatty acids, hexanoic acid (HA) and octanoic acid (OA), to be used as the corrosion inhibitors of low carbon steels in acid picking process. The concentrationsof acids used in this work were 0, 1, 5, and 20 mM in 0.1 M H2 SO4. The polarization curve showed that the corrosion potential (Ecorr) of carbon steel in H2 SO4 contained OA shifted to a negative (cathodic) direction. Thus, OA is a cathodic inhibitor controlling cathodic reaction chiefly. The corrosion rate also decreased with OA concentration. On the other hand, H2 SO4 contained 20 mM HA showed a slightly shift of Ecorr to a positive direction and reduce corrosion rate. In comparison with HA, OA at a concentration of 20 mM exhibited the highest inhibition efficiency (%IE) of 72.33% and a lower corrosion rate of 88.95% when compared with the non-inhibitor condition.

References

Abdallah, M. (2004). Guar gum as corrosion inhibitor for carbon steel in sulfuric acid solutions. Portugaliae Electrochimica Acta, 22(2), 161-175.

Abdel-Gaber, A.M., Abd-El-Nabey, B. A., Sidahmed, I. M., El-Zayady, A. M., & Saadawy, M. (2006). Inhibitive action of some plant extracts on the corrosion of steel in acidic media. Corrosion Science, 48(9), 2765-2779.

Abdel-Gaber, A.M., Khalil, N.N., & El-Fetouh, A.A. (2003). The dissolution mechanism of steel in inorganic acids. Anti-Corrosion Methods and Materials, 50(6), 442-447.

Badea, G.L., & Radu, G.L. (2018). Introductory Chapter, Carboxylic Acids - Key Role in Life Sciences. (pp. 1-5). London: IntechOpen.

Beermann, C., Jelinek, J., Reinecker, T., Hauenschild, A., Boehm, G., & Klor, H.U. (2003). Short-term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fattyacids on the fat metabolism of healthy volunteers. Lipids in Health and Disease, 2, 1-10.

Boisier, G., Lamure, A., Pebere, N., Portail, N., & Villatte, M. (2009). Corrosion protection of AA2024 sealed anodic layers using the hydrophobic properties of carboxylic acids, Surface, and Coating Technology, 203(22), 3420-3426.

Bothi Raja, P., & Sethuraman, M.G. (2008). Inhibitive effect of black pepper extract on the sulphuric acid corrosion of mild steel. Materials Letters, 62(17), 2977-2979.

Brycki, B., Kowalczyk, I., Szulc, A., Kaczerewska, O., & Pakiet, M. (2018). Organic corrosion inhibitors, Corrosion inhibitors, Principles and Recent Applications. Mahmood Aliofkhazraei: IntechOpen.

Govindasamy, R., & Ayappan, S. (2015). Study of corrosion inhibitor properties of novel semicarbazones on mild steel in acidic solutions. Journal of the Chilean Chemical Society, 60(1), 2786-2798.

Hughes, A.E., Mol, J.M.C., Zheludkevich, M.L., & Buchheit, R.G. (2016). Active Protective Coatings. Dordrecht: Springer.

Lin, B., & Zuo, Y. (2019). Corrosion inhibition of carboxylate inhibitors with different alkylene chain lengths on carbon steel in an alkaline solution. RSC Advances, 9(13), 7065-7077.

Malik, M.A., Hashim, M.A., Nabi, F., AL-Thabaiti, S.A., & Khan, Z. (2011). Anti-corrosion ability of surfactants: A Review. International Journal of Electrochemical Science, 6, 1927-1948.

Noor, E.A. (2005). The inhibition of mild steel corrosion in phosphoric acid solutions by some N-heterocyclic compounds in the salt form, Corrosion Science, 47, 33-35.

Sekunowo, O.I., Adeosun, S.O., & Lawal G.I. (2013). Potentiostatic polarisation responses of mild steel in seawater and acid environments, International Journal of Scientific & Technology Research, 2(10), 139-145.

Singh, A.K. (2012). Inhibition of mild steel corrosion in hydrochloric acid solution by 3-(4-((Z)-indolin-3- ylideneamino) phenylimino) indolin-2-one, Industrial & Engineering Chemistry Research 51(8), 3215-3223.

Tang, Z. (2019). A review of corrosion inhibitors for rust preventative fluids, Current Opinion in Solid State and Materials Science, 23(4), 100759.

Wang, S., Feng L., & Jiang, L. (2006). One-step solution-immersion process for fabrication of stable bionic superhydrophobic surfaces, Advanced Materials, 18(6), 767-770.

Young G.P., Hu, Y., & Le, L.R.K. (2005). Nyskohus L dietary fibre and colorectal cancer: a model for environment-gene interactions, Molecular Nutrition & Food Research, 49, 571-584.

Zaferani, S., Sharifi, M., Zaarei, D. & Shishesaz, M. (2013). Application of eco-friendly products as corrosion inhibitors for metals in acid pickling processes - A review. Journal of Environmental Chemical Engineering. 1. 652–657.

Zarrouk, A., Zarrok H., Salghi, R., Hammouti, B., Bentiss, F., Touir, R., & Bouachrine, M. (2013). Evaluation of Ncontaining organic compound as corrosion inhibitor for carbon steel in phosphoric acid, Journal Materials and Environmental Science, 4(2), 177-192.

Žerjav, G., & Milošev, I. (2014). Carboxylic acids as corrosion inhibitors for Cu, Zn and brasses in simulated urban rain, International Journal of Electrochemical Science, 9, 2696-2715.

Downloads

Published

2022-12-02