การวิเคราะห์ปริมาณ Cd2+ และ Pb2+ โดยใช้ขั้วไฟฟ้ากลาสซีคาร์บอนปรับปรุงด้วยอนุภาคนาโนบิสมัทควบคู่กับตรวจวัดด้วยโพเทนชิโอสแตทที่พัฒนาขึ้น
Determination of Cadmium(II) and Lead(II) Using Glassy Carbon Modified Nano-Bismuth Electrode Coupled with a Homemade Potentiostat
Keywords:
แคดเมียม(II) , ตะกั่ว(II) , อนุภาคนาโนบิสมัท , ชุดทดสอบ , น้ำทิ้งจากห้องปฏิบัติการ, Cadmium(II), Lead(II), Bismuth nanoparticles, Test kit, Laboratory wastewaterAbstract
งานวิจัยนี้ได้เสนอการพัฒนาอุปกรณ์การวิเคราะห์สำหรับการหาปริมาณแคดเมียม (II) (Cd2+) และตะกั่ว(II) (Pb2+) โดยอุปกรณ์การวิเคราะห์นี้อาศัยหลักการทางเคมีไฟฟ้า และมีส่วนประกอบหลัก 3 ส่วน คือ ส่วนขั้วไฟฟ้า ส่วนการควบคุมศักย์ไฟฟ้า และส่วนการแสดงผล โดยส่วนขั้วไฟฟ้าเป็นระบบ 3 ขั้ว ได้แก่ ขั้วไฟฟ้ากลาสซีคาร์บอนปรับปรุงด้วยอนุภาคนาโน บิสมัท (ขั้วไฟฟ้าทำงาน) ขั้วไฟฟ้าซิลเวอร์/ซิลเวอร์คลอไรด์ (ขั้วไฟฟ้าอ้างอิง) และขั้วไฟฟ้าแพลทินัม (ขั้วไฟฟ้าช่วย) สำหรับส่วนการควบคุมศักย์ไฟฟ้า หรือที่เรียกว่า “โพเทนชิโอสแตท” ได้ถูกออกแบบและพัฒนาขึ้นให้มีขนาดเล็กเหมาะสำหรับการวิเคราะห์ภาคสนาม และส่วนการแสดงผลใช้คอมพิวเตอร์ชนิดพกพา งานวิจัยนี้ได้ศึกษาสภาวะที่เหมาะสมต่าง ๆ เช่น ศักย์ไฟฟ้า และเวลาในการเกาะติด ความถี่ ศักย์ไฟฟ้า ขั้นบันได และแอมพลิจูด เป็นต้น จากการวิเคราะห์ Cd2+ และ Pb2+ ด้วยอุปกรณ์การวิเคราะห์ที่พัฒนาขึ้น พบว่ามีช่วงความเป็นเส้นตรง 2 ช่วง คือ 100-800 และ 1,200-4,000 ไมโครกรัมต่อลิตร ขีดจำกัดต่ำสุดของการตรวจวัดสำหรับ Cd2+ และ Pb2+ เท่ากับ 43.8 และ 66.0 ไมโครกรัมต่อลิตร ตามลำดับ และปริมาณต่ำสุด ที่สามารถวิเคราะห์เชิงปริมาณ เท่ากับ 145.9 และ 220.1 ไมโครกรัมต่อลิตร ตามลำดับ นอกจากนี้ได้นำอุปกรณ์การวิเคราะห์ที่ พัฒนาขึ้นมาประยุกต์ใช้ สำหรับวิเคราะห์หาปริมาณ Cd2+ และ Pb2+ ในตัวอย่างน้ำทิ้งจากห้องปฏิบัติการ และทำการเปรียบเทียบผลการวิเคราะห์กับเทคนิคอินดักทีฟลีคัปเปิลพลาสมา-ออปติคอล อิมิสชันสเปกโทรเมทรี (ICP-OES) ซึ่งพบว่าวิธี ที่พัฒนาขึ้นสามารถวิเคราะห์ Cd2+ และ Pb2+ ได้ไม่แตกต่างอย่างมีนัยสำคัญที่ระดับความเชื่อมั่นที่ร้อยละ 95 Analysis of cadmium(II) (Cd2+) and lead(II) (Pb2+) using by a developed device was presented in this work. This developed device bases on electrochemical principles, and it was consisted of 3 parts: the 1st is electrodes part; the 2nd is voltage controlling part and the 3rd is signal display part. For electrodes part, the three electrodes system used were the bismuth nanoparticles electrode, the Ag/AgCl electrode and the platinum wire as working, reference, and auxiliary electrodes, respectively. The voltage regulator or “Potentiostat” was created and developed for being suitable of portable device. The last, laptop was applied as signal display part. The optimal conditions such as time and voltage for deposition of analytes, frequency, step potential and amplitude, etc. As the results, the calibration graphs of both Cd2+and Pb2+showed good linearity in the ranges of 100-800 and 1,200-1,400 µgL-1. The limit of detection (LOD) of Cd2+ and Pb2+ were 43.8 and 66.0 µgL-1, respectively. The limit of quantification (LOQ) of Cd2+ and Pb2+ were 145.9 and 220.1 µgL-1, respectively. Moreover, this developed device was applied for determination of Cd2+ and Pb2+ in laboratory wastewater samples. These results from the proposed method were compared to these from Inductively coupled plasma - optical emission spectrometry (ICP-OES). These showed that were not significantly different at the 95% confidence level.References
Afkhami, A., Soltani-Felehgari, F., Madrakian, T., Ghaedi, H., & Rezaeivala, M. (2013). Fabrication and application of a new modified electrochemical sensor using nano-silica and a newly synthesized Schiff base for simultaneous determination of Cd2+, Cu2+ and Hg2+ ions in water and some foodstuff samples. Analytica Chimica Acta, 771, 21–30. https://doi.org/10.1016/j.aca.2013.02.031
Ainla, A., Mousavi, M. P. S., Tsaloglou, M. N., Redston, J., Bell, J. G., Fernández-Abedul, M. T., & Whitesides, G. M. (2018). Open-Source Potentiostat for Wireless Electrochemical Detection with Smartphones. Analytical Chemistry, 90(10), 6240–6246. https://doi.org/10.1021/acs.analchem.8b00850
Aragay, G., Pons, J., & Merkoi, A. (2011). Enhanced electrochemical detection of heavy metals at heated graphite nanoparticle-based screen-printed electrodes. Journal of Materials Chemistry, 21(12), 4326–4331. https://doi.org/10.1039/c0jm03751f
Arduini, F., Calvo, J. Q., Palleschi, G., Moscone, D., & Amine, A. (2010). Bismuth-modified electrodes for lead detection. TrAC - Trends in Analytical Chemistry, 29(11), 1295–1304. https://doi.org/10.1016/j.trac.2010.08.003
Arellano-Pérez, J. H., Ramos Negrón, O. J., Escobar-Jiménez, R. F., Gómez-Aguilar, J. F., & Uruchurtu-Chavarín, J. (2018). Development of a portable device for measuring the corrosion rates of metals based on electrochemical noise signals. Measurement: Journal of the International Measurement Confederation, 122(November 2017), 73–81. https://doi.org/10.1016/j.measurement.2018.03.008
Bagheri, H., Afkhami, A., Khoshsafar, H., Rezaei, M., & Shirzadmehr, A. (2013). Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sensors and Actuators B Chemical, 186, 451.
Bakirdere, S., Yaroǧlu, T., Tirik, N., Demiröz, M., Fidan, A. K., Maruldali, O., & Karaca, A. (2013). Determination of As, Cd, and Pb in tap water and bottled water samples by using optimized GFAAS system with Pd-Mg and Ni as matrix modifiers. Journal of Spectroscopy, 1(1). https://doi.org/10.1155/2013/824817
Charles, S., Fabien, D., Yunus, S., & Donckt, E. (2000). Determination by Fluorescence Spectroscopy of Cadmium at the Subnanomolar Level: Application to Seawater. Journal of Fluorescence, 10, 99. https://doi.org/10.1023/A:1009430723152
da Silva, C. S., Pinheiro, F. C., do Amaral, C. D. B., & Nóbrega, J. A. (2017). Determination of As, Cd, Hg and Pb in continuous use drugs and excipients by plasma-based techniques in compliance with the United States Pharmacopeia requirements. Spectrochimica Acta - Part B Atomic Spectroscopy, 138(April 2012), 14–17. https://doi.org/10.1016/j.sab.2017.10.004
Dalman, Ö., Demirak, A., & Balci, A. (2006). Determination of heavy metals (Cd, Pb) and trace elements (Cu, Zn) in sediments and fish of the Southeastern Aegean Sea (Turkey) by atomic absorption spectrometry. Food Chemistry, 95(1), 157-162. https://doi.org/10.1016/j.foodchem.2005.02.009
Deshmukh, S., Kandasamy, G., Upadhyay, R. K., Bhattacharya, G., Banerjee, D., Maity, D., Deshusses, M. A., & Roy, S. S. (2017). Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. Journal of Electroanalytical Chemistry, 788(January 2018), 91–98. https://doi.org/10.1016/j.jelechem.2017.01.064
Ding, R., Cheong, Y. H., Ahamed, A., & Lisak, G. (2021). Heavy Metals Detection with Paper-Based Electrochemical Sensors. Analytical Chemistry, 93(4), 1880–1888. https://doi.org/10.1021/acs.analchem.0c04247
Garciá-Miranda Ferrari, A., Carrington, P., Rowley-Neale, S. J., & Banks, C. E. (2020). Recent advances in portable heavy metal electrochemical sensing platforms. In Environmental Science: Water Research and Technology (Vol. 6, Issue 10). https://doi.org/10.1039/d0ew00407c
Gu, Z., Liu, H. X., Ying, Y. L., Xiu, G., & Long, Y. T. (2018). A thumb-size electrochemical system for portable sensors. Analyst, 143(12), 2760–2764. https://doi.org/10.1039/c8an00645h
Hassan, K. M., Gaber, S. E., Altahan, M. F., & Azzem, M. A. (2020). Single and simultaneous voltammetric sensing of lead(II), cadmium(II) and zinc(II) using a bimetallic Hg-Bi supported on poly(1,2-diaminoanthraquinone)/glassy carbon modified electrode. Sensing and Bio-Sensing Research, 29(April), 100369. https://doi.org/10.1016/j.sbsr.2020.100369
Horwitz, W. (2002). AOAC guidelines for single laboratory validation of chemical methods for dietary supplements and botanicals. Gaithersburg, MD, USA: AOAC International, 12–19.
Ionescu, C., Svasta, P., Tǎmaş, C., Bala, C., & Rotariu, L. (2010). Portable measuring and display unit for electrochemical sensors. 2010 IEEE 16th International Symposium for Design and Technology of Electronics Packages, SIITME 2010, 215–218. https://doi.org/10.1109/SIITME.2010.5653021
Kanchak, A., & Pasukphun, N. (2021). Water Quality and Heavy Metal Monitoring of the Pong River in Northeast Thailand. Burapha Science Journal, 26(August), 700–715.
Kim, S. H., Lim, Y., Hwang, E., & Yim, Y. H. (2016). Development of an ID ICP-MS reference method for the determination of Cd, Hg and Pb in a cosmetic powder certified reference material. Analytical Methods, 8(4), 796–804. https://doi.org/10.1039/c5ay02040a
Laur, N., Kaiser, L., Deigner, H. P., & Kinscherf, R. (2021). Sequential analysis of trace elements in a micro volume urine sample using inductively coupled plasma mass spectrometry. Applied Sciences (Switzerland), 11(9). https://doi.org/10.3390/app11093740
Mei, C. J., Yusof, N. A., & Alang Ahmad, S. A. (2021). Electrochemical determination of lead & copper ions using thiolated calix[4]arene-modified screen-printed carbon electrode. Chemosensors, 9(7). https://doi.org/10.3390/chemosensors9070157
Mourya, A., Mazumdar, B., & Sinha, S. K. (2019). Determination and quantification of heavy metal ion by electrochemical method. Journal of Environmental Chemical Engineering, 7(6), 103459. https://doi.org/10.1016/j.jece.2019.103459
Oliva, M., Camas, D. E., Valqui, X. J., Meléndez, J. B., & Leiva, S. (2019). Quantitative Determination of Cadmium (Cd) in Soil-Plant System in Potato Cropping (Solanum tuberosum var. Huayro). Advances in Agriculture, 2019, 1–4. https://doi.org/10.1155/2019/9862543
Palisoc, S., Vitto, R. I. M., & Natividad, M. (2019). Determination of Heavy Metals in Herbal Food Supplements using Bismuth/Multi-walled Carbon Nanotubes/Nafion modified Graphite Electrodes sourced from Waste Batteries. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-54589-x
Peña, R. C., Cornejo, L., Bertotti, M., & Brett, C. M. A. (2018). Electrochemical determination of Cd(II) and Pb(II) in mining effluents using a bismuth-coated carbon fiber microelectrode. Analytical Methods, 10(29), 3624–3630. https://doi.org/10.1039/c8ay00949j
Pozzatti, M., Borges, A. R., Dessuy, M. B., Vale, M. G. R., & Welz, B. (2017). Determination of cadmium, chromium and copper in vegetables of the Solanaceae family using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis. Analytical Methods, 9(2), 329–337. https://doi.org/10.1039/c6ay02594c
Rehacek, V., Hotovy, I., Vojs, M., Kups, T., & Spiess, L. (2012). Nafion-coated bismuth film electrodes on pyrolyzed photoresist/alumina supports for analysis of trace heavy metals. Electrochimica Acta, 63(February 2021), 192–196. https://doi.org/10.1016/j.electacta.2011.12.075
Saleh, G. A., Askal, H. F., Refaat, I. H., Naggar, A. H., & Abdel-aal, F. A. M. (2016). Adsorptive square wave voltammetric determination of the antiviral drug valacyclovir on a novel sensor of copper microparticles-modified pencil graphite electrode. Arabian Journal of Chemistry, 9(1), 143–151. https://doi.org/10.1016/j.arabjc.2015.08.015
Sanchayanukun, P., & Muncharoen, S. (2019). Elimination of Cr(VI) in laboratory wastewater using chitosan coated magnetite nanoparticles (chitosan@Fe3O4). EnvironmentAsia, 12(2), 32–48. https://doi.org/10.14456/ea.2019.25
Sanchayanukun, P., & Muncharoen, S. (2020). Chitosan coated magnetite nanoparticle as a working electrode for determination of Cr(VI) using square wave adsorptive cathodic stripping voltammetry. Talanta, Vi, 121027. https://doi.org/10.1016/j.talanta.2020.121027
Tayeb, I. A., & Abdul Razak, K. (2018). Development of Gold Nanoparticles Modified Electrodes for the Detection of Heavy Metal Ions. Journal of Physics: Conference Series, 1083(1). https://doi.org/10.1088/1742-6596/1083/1/012044
Wang, Y., & Kim, K. S. (2008). Large-scale polyol synthesis of single-crystal bismuth nanowires and the role of NaOH in the synthesis process. Nanotechnology, 19(26), 265303. https://doi.org/10.1088/0957-4484/19/26/265303
Wu, J., Li, M., Tang, H., Su, J., He, M., Chen, G., Guan, L., & Tian, J. (2019). Portable paper sensors for the detection of heavy metals based on light transmission-improved quantification of colorimetric assays. Analyst, 144(21), 6382–6390. https://doi.org/10.1039/c9an01131e
Xing, S., Xu, H., Chen, J., Shi, G., & Jin, L. (2011). Nafion stabilized silver nanoparticles modified electrode and its application to Cr(VI) detection. Journal of Electroanalytical Chemistry, 652(1–2), 60–65. https://doi.org/10.1016/j.jelechem.2010.03.035
Zhao, C., Zhong, G., Kim, D.-E., Liu, J., & Liu, X. (2014). A portable lab-on-a-chip system for gold-nanoparticle-based colorimetric detection of metal ions in water. Biomicrofluidics, 8(5), 052107. https://doi.org/10.1063/1.4894244
Zheng, H., Jia, B., Zhu, Z., Tang, Z., & Hu, S. (2014). Determination of trace amounts of Pb, Cd, Ni and Co by wavelength-dispersive X-ray fluorescence spectrometry after preconcentration with dithizone functionalized graphene. Analytical Methods, 6(21), 8569–8576. https://doi.org/10.1039/c4ay01381f
Zhong, W. S., Ren, T., & Zhao, L. J. (2016). Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry. Journal of Food and Drug Analysis, 24(1), 46–55. https://doi.org/10.1016/j.jfda.2015.04.010
Žurga, N., Majer, D., & Finšgar, M. (2021). Pb(Ii) determination in a single drop using a modified screen-printed electrode. Chemosensors, 9(2), 1-10. https://doi.org/10.3390/chemosensors9020038