สมการไดโอแฟนไทน์ p2x + qy = z4 และ p2x – qy – z4 เมื่อ p และ q เป็นจำนวนเฉพาะ
On the Diophantine Equations p2x + qy = z4 and p2x – qy – z4 where p and q are Primes
Keywords:
สมการไดโอแฟนไทน์, ข้อคาดการณ์ของกาตาลัน, Diophantine equation , Catalan’s ConjectureAbstract
ในงานวิจัยนี้ได้ศึกษาสมการไดโอแฟนไทน์ p2x + qy = z4 และ p2x – qy – z4 เมื่อ p และ q เป็นจำนวนเฉพาะ พบว่า สมการไดโอแฟนไทน์ p2x + qy = z4 มีผลเฉลยทั้งหมดที่เป็นจำนวนเต็มที่ไม่เป็นลบคือ (p,q,x,y,z) ∈ {(3,7,1,1,2)} È {(p,2,1,log2 (p+1) + 2, |log2 (p+1), } È {(2,17,3,1,3)} และสมการไดโอแฟนไทน์ p2x – qy = z4 มีผลเฉลยทั้งหมดที่เป็นจำนวนเต็มที่ไม่เป็นลบคือ (p,q,x,y,z) ∈ {(p,q,1,logq (2p-1), |log2 (2p-1), } È {(p,2,1,log2 (p-1) + 2, |log2 (p-1), } È {(p,q,0,0,0)} È {(p,p,u,2,u,0) |u+ } In this paper, we study Diophantine equations p2x + qy = z4 and p2x – qy – z4 where p and q are primes. We found that all non-negative integer solutions of the Diophantine equation p2x + qy = z4 are of the following (p,q,x,y,z) ∈ {(3,7,1,1,2)} È {(p,2,1,log2 (p+1) + 2, |log2 (p+1), } È {(2,17,3,1,3)} and all non-negative integer solutions of the Diophantine equation p2x - qy = z4 are of the following (p,q,x,y,z) ∈ {(p,q,1,logq (2p-1), |log2 (2p-1), } È {(p,2,1,log2 (p-1) + 2, |log2 (p-1), } È {(p,q,0,0,0)} È {(p,p,u,2,u,0) |u+ }References
Bacani, J. B., & Rabago, J.F.T. (2015). The complete set of solutions of the Diophantine equation px+qy=z2 for twin primes p and q. International Journal of Pure and Applied Mathematics, 104, 517-521.
Burshtein, N. (2017). On solutions to the Diophantine equation px+qy=z4. Annals of Pure and Applied Mathematics. 14, 63-68.
Burshtein, N. (2018). On the Diophantine equation 22x+1+7y=z2. Annals of Pure and Applied Mathematics, 16, 177-179
Burshtein, N. (2019). All the solutions of the Diophantine equations px+py=z2 and px-py=z2 when p≥2 is prime. Annals of Pure and Applied Mathematics, 19, 111-119.
Burshtein, N. (2020). All the solutions of the Diophantine equations px+py=z4 when p≥2 is prime and x,y,z are positive integers. Annals of Pure and Applied Mathematics, 21, 125-128.
Burshtein, N. (2021). All the solutions of the Diophantine equations p4+qy=z4 and p4-qy=z4 when p,q are distinct primes. Annals of Pure and Applied Mathematics, 23, 17-20.
Chotchaisthit, S. (2012). On the Diophantine equation 4x+py=z2 where p is a prime number. American Jr. of Mathematics and Science, 1(1), 191-193.
Chotchaisthit, S. (2013). On the Diophantine equation 2x+11y=z2. Maejo International Journal of Science and Technology, 7(2), 291-293.
Chotchaisthit, S. (2013). On the Diophantine equation px+(p+1)y=z2 where p is a Mersenne prime. International Journal of Pure and Applied Mathematics, 88(2), 169-172.
Dokchan, R., & Pakapongpun, A. (2021). On the Diophantine equation px+(p+20)y=z2 where p and p+20 are primes. International Journal of Mathematics and Computer Science, 16(1), 179-183.
Mihailescu, P. (2004). Primary cyclotomic units and a proof of Catalan’s conjecture. J. Reine Angew. Math., 572,167-195.
Mina, R. J. S., & Bacani, J.B. (2019). Non-existence of solutions of Diophantine equations of the form px+qy=z2n. Mathematics and Statistics, 7(3), 78-81.
Mina, R. J. S., & Bacani, J.B. (2021). On the solutions of the Diophantine equation px+(p+4k)y=z2 for prime pairs p and p+4k . European Journal of Pure and Applied Mathematics, 14(2), 471-479.
Singha, B. (2021). Non-negative solutions of the nonlinear Diophantine equation (8n)x+py=z2 for some prime number p . Walailak J. Sci. & Tech., 18(16): 11719, 8 pages.
Sroysang, B. (2012). On the Diophantine equation 31x+32y=z2. International Journal of Pure and Applied Mathematics, 81(4), 609-612.
Suvarnamani, A., Singta, A., & Chotchaisthit, S. (2011). On two Diophantine equations 4x+7y=z2 and 4x+11y=z2. Science and Technology RMUTT Journal, 1(1), 25-28.