บทบาทของการใช้คลื่นอัลตร้าโซนิคต่อการเพิ่มประสิทธิภาพการผลิตชาดำคอมบูชา

Role of Ultrasonic-assisted Fermentation on Kombucha Black Tea Process Enhancements

Authors

  • วรลักษณ์ สุริวงษ์
  • สมเกียรติ จตุรงค์ล้ำเลิศ
  • ชานันดา ธิน่าน
  • ฐาปนี จงหวัง

Keywords:

คอมบูชา, ชาดำ, คลื่นอัลตร้าโซนิค , การหมัก, kombucha, black tea , ultrasonic, fermentation

Abstract

การศึกษาครั้งนี้มีวัตถุประสงค์เพื่อศึกษาผลของการใช้คลื่นอัลตราโซนิคในระหว่างกระบวนการหมักชาดำคอมบูชา ที่มีต่อลักษณะจลพลศาสตร์ของปริมาณกรดทั้งหมดในรูปของกรดอะซิติก ระยะเวลาการหมัก คุณภาพทางกายภาพและทางเคมี รวมถึงปริมาณยีสต์ที่ได้อัตราส่วนที่เหมาะสมในการหมักชาคอมบูชาด้วยชาดำปริมาณ 1 ลิตร ได้จากชาดำสัดส่วน 3 กรัมต่อลิตร น้ำตาล 10% (w/v) และหัวเชื้อสกูบี้ 10% (v/v) ที่อุณหภูมิห้อง จะได้น้ำชาหมักคอมบูชาที่ผลิตจากชาดำที่มีรสชาติที่ดีเมื่อระยะเวลาหมัก 8-11 วัน โดยมีค่าพีเอชสุดท้ายเท่ากับ 3.30±0.303 และปริมาณกรดทั้งหมดในรูปของกรดอะซิติกสูงถึง 4.25±0.110 กรัมต่อลิตร ผลของการใช้คลื่นอัลตราโซนิคที่มีต่อระยะเวลาการหมัก คุณภาพทางกายภาพและทางเคมีของชาหมักคอมบูชา พบว่า เมื่อทรีทด้วยคลื่นอัลตร้าโซนิคที่เวลานานขึ้นจะช่วยลดระยะเวลาการหมักชาคอมบูชาให้ สั้นลงถึงร้อยละ 60 หรือใช้เวลาการหมักเพียง 5 วัน เมื่อทรีทด้วยคลื่นอัลตราโซนิคแบบรอบสั่น-หยุดเป็นเวลา 30 นาทีต่อวัน โดยไม่ส่งผลต่อลักษณะสีของน้ำชาคอมบูชา และสามารถอธิบายลักษณะการเปลี่ยนแปลงของปริมาณกรดทั้งหมดในรูปกรดอะซิติกได้ด้วยสมการเอกซ์โพเนนเชียล A = A 0 e -kt ที่ค่า R2 ในช่วง 0.96 – 0.99 ทั้งนี้คุณสมบัติต่าง ๆ ที่เกิดขึ้นใน ระหว่างการหมักย่อมแตกต่างกันไปขึ้นอยู่กับแหล่งที่มาของหัวเชื้อสกูบี้และสภาพแวดล้อมที่เกิดขึ้นขณะทำการหมักชาคอมบูชา  This research aimed to study effects of ultrasonic waves on the fermentation process of black tea kombucha. Kinetics of TA during kombucha fermentation, fermentation time, physical and chemical properties of kombucha black tea and the number of yeasts were studied. It was found that the appropriate ratio for 1 Litre of kombucha fermentation at room temperature was 3 g/L of black tea, 10%(w/v) of sugar and 10%(v/v) of scoby. By using the appropriate ratio, the good taste kombucha black tea would obtained from 8 – 11 days of fermentation time with final pH 3.30±0.303 and total acid (in terms of acetic acid) of 4.25±0.110 g/L. In addition, the effect of ultrasonic waves on the fermentation time, the physical and chemical properties of kombucha tea showed that the longer the ultrasonic treatment, the shorter the fermentation time of kombucha tea without color changes of black tea kombucha. The shortest fermentation time occurred in the black tea kombucha fermentation with the ultrasonic treatment of US pulse-US pause 30 mins per day (60%). The kinetics of TA during the fermentation of black tea kombucha could be well explained by exponential equation; A = A 0 e –kt with R2 of 0.96 – 0.99. However, properties changes during fermentation depended on source of scoby and fermentation condition.

References

Ahmed, R. F., Hikal, M. S., & Abou-Taleb, K. A. (2020). Biological, chemical and antioxidant activities of different types Kombucha. Annals of Agricultural Sciences, 65(1), 35-41.

Al Daccache, M., Koubaa, M., Salameh, D., Maroun, R. G., Louka, N., & Vorobiev, E. (2020). Ultrasound-assisted fermentation for cider production from Lebanese apples. Ultrasonics Sonochemistry, 63, 1-8.

Bacteriological Analytical Manual Online. (2001). Chapter 3: Aerobic Plate Count. USFDA. 1 0 pp. (http://www.cfsan.fda.gov).

BAM. 2001. Bacteriological Analytical Manual. 8th edition. USA: U.S. Food and Drug Administration.

Bartkiene, E., Bartkevics, V., Ikkere, L. E., Pugajeva, I., Zavistanaviciute, P., Lele, V., & Juodeikiene, G. (2018). The effects of ultrasonication, fermentation with Lactobacillus sp., and dehydration on the chemical composition and microbial contamination of bovine colostrum. Journal of dairy science, 101(8), 6787- 6798.

Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Kumar, V., & Joshi, V. (2016). Kombucha: Technology, Microbiology, Production, Composition and Therapeutic Value. International Journal of Food and Fermentation Technology, 6(1), 13-24.

Cvetkovic, D., Markov, S., Djurić, M., Savić, D., & Velićanski, A. (2008). Specific interfacial area as a key variable in scaling-up Kombucha fermentation. Journal of Food Engineering, 85(3), 387-392. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2007.07.021

Dufresne, C., & Farnworth, E. (2000). Tea, Kombucha, and health: A review. Food Research International - FOOD RES INT, 33, 409-421. https://doi.org/10.1016/S0963-9969(00)00067-3

Huezo, L., Shah, A., & Michel Jr, F. C. (2019). Effects of Ultrasound on Fermentation of Glucose to Ethanol by Saccharomyces cerevisiae. Fermentation, 5(16), 1-14.

Jafari, R., Naghavi, N. S., Khosravi-Darani, K., Doudi, M., & Shahanipour, K. (2020). Kombucha microbial starter with enhanced production of antioxidant compounds and invertase. Biocatalysis and Agricultural Biotechnology, 29, 101789. https://doi.org/https://doi.org/10.1016/j.bcab.2020.101789

Jayabalan, R., Marimuthu, S., Thangaraj, P., Sathishkumar, M., Binupriya, A. R., Swaminathan, K., & Yun, S. E. (2008). Preservation of Kombucha Tea-Effect of Temperature on Tea Components and Free Radical Scavenging Properties. Journal of Agricultural and Food Chemistry, 56(19), 9064-9071. https://doi.org/10.1021/jf8020893.

Liu, C.H., Hsu, W.H., Lee, F.L. and Liao, C.C. (1996). The isolation and identifi cation of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiology, 13, 407-415.

Mason, T. J. (1998). Power ultrasound in food processing – the way forward. pp. 105-126. In “Ultrasound in Food Processing”. Povey, M. J. W. and Mason, T. J. (eds.). Blackie Academic & Professional, London.

Malbaša, R., Lončar, E., & Djurić, M. (2008). Comparison of the products of Kombucha fermentation on sucrose and molasses. Food Chemistry, 106(3), 1039-1045.

May, A., Narayanan, S., Alcock, J., Varsani, A., Maley, C., & Aktipis, A. (2019). Kombucha: a novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ, 7, e7565.

Ojha, K. S., Mason, T. J., O’Donnell, C. P., Kerry, J. P., & Tiwari, B. K. (2017). Ultrasound technology for food fermentation applications. Ultrasonics sonochemistry, 34, 410-417.

Pawar, S. V., & Rathod, V. K. (2020). Role of ultrasound in assisted fermentation technologies for process enhancements. Preparative Biochemistry & Biotechnology, 50(6), 627-634.

Pitt, W. G., & Ross, S. A. (2003). Ultrasound increases the rate of bacterial cell growth. Biotechnology progress, 19(3), 1038-1044.

Sirisa-ard, P., Bovonsombut, S., Kitipornchai, C., Natakarnkitkul, S., Tragoolpua, Y., Pukumpuang, W., Klawpiyapamornkun, T., & Kiatkarun, S. (2015). Development of Kombucha: fermented tea beverage. International Journal of Tea Science (IJTS), 11(1&2), 9-13.

Soto, V., Alejandra, S., Sandra, B., Jalloul, B., Jean-Pierre, S., & Patricia, T. (2018). Understanding Kombucha Tea Fermentation: A Review. Journal of Food Science, 83(3), 580-588.

Suriwong, V., Jaturonglumlert, S., Varith, J., Narkprasom, K., & Nitatwichit, C. (2020). Crystallisation behaviour of sunflower and longan honey with glucose addition by absorbance measurement. International Food Research Journal, 27(4), 727-734.

Susan Gray. (2019). Kombucha and pH: The Complete Guide to Raising and Lowering PH. [Online]. เข้าถึงได้จาก https://growyourpantry.com/blogs/kombucha/ph-and-kombucha-the-complete-guide-to-raising-and-lowering-ph.

Torán-Pereg, P., Del Noval, B., Valenzuela, S., Martinez, J., Prado, D., Perisé, R., & Arboleya, J. C. (2021). Microbiological and sensory characterization of kombucha SCOBY for culinary applications. International Journal of Gastronomy and Food Science, 23, 1-8.

Yan, Z., Zhong, Y., Duan, Y., Chen, Q., & Li, F. (2020). Antioxidant mechanism of tea polyphenols and its impact on health benefits. Animal Nutrition, 6(2), 115-123.

Downloads

Published

2023-03-10