การประเมินพื้นที่เสี่ยงน้ำท่วมโดยใช้เทคนิคการสำรวจระยะไกล (Remote Sensing) และแบบจำลองทางชลศาสตร์ (Hydraulic Modelling) ในพื้นที่ลุ่มน้ำคลองบางสะพานใหญ่ จังหวัดประจวบคีรีขันธ์
Flood Risk Assessment using Remote Sensing Techniques and Hydraulic Modelling in Khlong Bang Saphan Yai River Basin, Prachuap Khiri Khan Province
Keywords:
สำรวจระยะไกล, แบบจำลองทางชลศาสตร์, พื้นที่น้ำท่วม, ขอบเขตพื้นที่น้ำท่วม, remote sensing, hydraulic modelling, HEC-RAS, flood Inundation, flood extentAbstract
ลุ่มน้ำคลองบางสะพานใหญ่มีความสำคัญต่อพื้นที่เกษตรของจังหวัดประจวบคีรีขันธ์ เมื่อปี พ.ศ.2561 ได้เกิดเหตุการณ์น้ำท่วมก่อให้เกิดความเสียหายในหลายพื้นที่ โดยสาเหตุเกิดจากฝนที่ตกหนักติดต่อกันหลายวัน ทำให้ระดับน้ำในคลองสูงและเกิดการล้นตลิ่ง และมีสาเหตุเกิดจากระดับน้ำทะเลสูง จึงส่งผลทำให้น้ำไม่สามารถระบายออกสู่ทะเลได้ จนกลายเป็นน้ำท่วมในหลายพื้นที่ การศึกษาในครั้งนี้มีวัตถุประสงค์ เพื่อประเมินพื้นที่เสี่ยงน้ำท่วมที่เกิดจากการไหลล้นตลิ่ง คลองบางสะพานใหญ่โดยใช้แบบจำลองทางชลศาสตร์ (HEC-RAS) ร่วมกับเทคนิคการสำรวจระยะไกล (Remote sensing) จากการศึกษาได้ใช้ค่าสัมประสิทธิ์ความขรุขระของแมนนิ่ง (n) ที่ตลิ่งของทั้งสองข้างเท่ากับ 0.045 และท้องน้ำเท่ากับ 0.050 โดยทำการปรับเทียบและสอบ เทียบแบบจำลองกับข้อมูลปริมาณน้ำท่ารายวันในปี พ.ศ.2561 และ 2562 ได้ ผลการปรับเทียบ มีค่า R2 เท่ากับ 0.914 และค่า NSE เท่ากับ 0.861 และผลการสอบเทียบ มีค่า R2 เท่ากับ 0.822 และค่า NSE เท่ากับ 0.634 ผลการศึกษาพบว่า การจำลองสภาพน้ำท่วมด้วยแบบจำลอง HEC-RAS ได้ค่าอัตราการไหลสูงสุดที่สถานีท้ายน้ำ เท่ากับ 127.17 ลบ.ม./วินาทีและค่าระดับน้ำสูงสุด 9.08 ม.รทก. สำหรับการวิเคราะห์หาพื้นที่เสี่ยงน้ำท่วมและประเมินความถูกต้อง เปรียบเทียบกับขอบเขตพื้นที่น้ำท่วมจากเทคนิคการสำรวจระยะไกล พบว่า พื้นที่เสี่ยงน้ำท่วมที่ซ้อนทับกัน เท่ากับ 0.22 ตร.กม. คิดเป็นร้อยละ 17.5 มีพื้นที่เสี่ยงน้ำท่วม 4 ตำบล ได้แก่ ตำบลร่อนทอง, ตำบลทองมงคล, ตำบลกำเนิดนพคุณ และ ตำบลพงศ์ประศาสตร์ ตั้งอยู่ในอำเภอบางสะพานใหญ่ จังหวัดประจวบคีรีขันธ์ The Khlong Bang Saphan Yai River Basin is important in agriculture in Prachuap Khiri Khan Province. In 2018, there was a flood that affected several areas throughout the basin due to many days of heavy rainfall, resulting in high water levels in the Khlong Bang Saphan Yai River and overflows. Another factor is the high sea level which water could not drain into the sea and caused surface runoffs and floodplains in many areas. This study aims to determine the application of hydraulic modelling (HEC-RAS) integrated with remote sensing techniques to assess flood risk area in the Khlong Bang Saphan Yai River Basin. This study used Manning’s roughness coefficient (n) of 0.045 for both riverbanks and 0.050 for the channel. The HEC-RAS calibration and validation indicated a good agreement with observed daily discharge data during the periods of 2018 and 2019. Calibration results showed the Coefficient of determination (R2) value of 0.914 and the Nash-Sutcliffe coefficient of efficiency (NSE) value of 0.861. Validation results showed the R2 value was 0.822 and the NSE value was 0.634. The result of HEC-RAS simulation found that the maximum flow rate value of 127.17 m3/s and the maximum water level value of 9.08 m. MSL at the downstream gauging. In addition, the study of the validation assessment of the flood inundation from the model simulation was performed in comparison to the flooded extent derived from remote sensing techniques, the result showed overlapping of the flooded area of 0.22 km2 (17.5%). It covered four sub-districts, namely Ron Thong, Thong Mongkhon, Kamnoet Nopphakhun, and Phong Prasat in Bang Saphan Yai District, Prachuap Khiri Khan Province.References
Abdelkarim, A., Elkarim, A., Awawdeh, M., Alogayell, H., & Al-Alola, S. (2020). INTERGRATION REMOTE SENSING AND HYDROLOGIC, HYDROULIC MODELLING ON ASSESSMENT FLOOD RISK AND MITIGATION: AL-LITH CITY, KSA. International Journal of GEOMATE, 18, 33.
Balogun, D., O McKelvin, A., Mohammed, A., Ogunbiyi, U., Okewu, A., Ikegwuonu, E., & Nkut, B. (2020). Flood Risk and Vulnerability Analysis of the Lower Usuma River in Gwagwalada Town Abuja, using GIS and HEC-RAS Model. 9, 187-197.
Chit Myo, L. (2020). Flood Hazard Mapping and Risk Assessment for Chindwin River Basing, Myanmar. (M. Sc Dissertation of Wuhan University). Wuhan University, (10486).
Dadhich, G., Miyazaki, H., & Babel, M. (2019). APPLICATIONS OF SENTINEL-1 SYNTHETIC APERTURE RADAR IMAGERY FOR FLOODS DAMAGE ASSESSMENT: A CASE STUDY OF NAKHON SI THAMMARAT, THAILAND. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences.
Elkhrachy, I., Pham, Q. B., Costache, R., Mohajane, M., Rahman, K. U., Shahabi, H., Linh, N. T. T., & Anh, D. T. (2021). Sentinel-1 remote sensing data and Hydrologic Engineering Centres River Analysis System twodimensional integration for flash flood detection and modelling in New Cairo City, Egypt. Journal of Flood Risk Management, 14(2), e12692. doi:https://doi.org/10.1111/jfr3.12692.
Filipponi, F. (2019). Sentinel-1 GRD preprocessing workflow. Paper presented at the Multidisciplinary digital publishing institute proceedings.
Haraguchi, M., & Lall, U. (2015). Flood risks and impacts: A case study of Thailand’s floods in 2011 and research questions for supply chain decision making. International Journal of Disaster Risk Reduction, 14, 256-272. doi:https://doi.org/10.1016/j.ijdrr.2014.09.005.
Huţanu, E., Mihu-Pintilie, A., Urzica, A., Paveluc, L. E., Stoleriu, C. C., & Grozavu, A. (2020). Using 1D HEC-RAS Modeling and LiDAR Data to Improve Flood Hazard Maps Accuracy: A Case Study from Jijia Floodplain (NE Romania). Water, 12(6). doi:10.3390/w12061624.
Megha, V., Joshi, V., Kakde, N., Jaybhaye, A., & Dhoble, D. (2019). Flood Mapping and Analysis using Sentinel Application Platform (SNAP)–A Case Study of Kerala. Int. J. Res. Eng. Sci. Manage, 2, 486-488.
Mihu-Pintilie, A., Cătălin, I. C., Cristian Constantin, S., Martín Núñez, P., & Paveluc, L. E. (2019). Using HighDensity LiDAR Data and 2D Streamflow Hydraulic Modeling to Improve Urban Flood Hazard Maps: A HEC-RAS Multi-Scenario Approach. Water, 11(9), 1832. doi:http://dx.doi.org/10. 3390/w11091832.
Nguyen, H. Q., Vu, A. T., Le Thi Thu, H., Nguyen Manh, H., Doan Thi, T., Dinh Thi, D., Ngo, D. A., & Hackney, C. R. (2020). Hydrological/Hydraulic Modeling-Based Thresholding of Multi SAR Remote Sensing Data for Flood Monitoring in Regions of the Vietnamese Lower Mekong River Basin. Water, 12(1), 71. doi:http://dx.doi.org/10.3390/w12010071.
Psomiadis, E., Diakakis, M., & Soulis, K. X. (2020). Combining SAR and Optical Earth Observation with Hydraulic Simulation for Flood Mapping and Impact Assessment. Remote Sensing, 12(23). doi:10.3390/rs12233980.
Psomiadis, E., Soulis, K. X., Zoka, M., & Dercas, N. (2019). Synergistic Approach of Remote Sensing and GIS Techniques for Flash-Flood Monitoring and Damage Assessment in Thessaly Plain Area, Greece. Water, 11(3). doi:10.3390/w11030448.
Thoummalangsy, S., Tuankrua, V., Pukngam, S., Pothitan, R., & Ongkeo, O. (2019). Flood Risk Mapping Using HEC-RAS and GIS Technique: Case of the Xe Bangfai Floodplain, Khammoune Province, Lao PDR. The Environmental Engineering Journal, 33(3), 27-38.
USACE. (2018). Analyzing Flood Risk for Forecast Informed Reservoir Operatrtions in the Fussian River Watershed Using HEC-WAT: Institute for Water Resources Hydrologic Engineering Center.
Vanama, V., Musthafa, M., Khati, U., Gowtham, R., Singh, G., & Rao, Y. (2021). Inundation mapping of Kerala flood event in 2018 using ALOS-2 and temporal Sentinel-1 SAR images. Current Science, 120(5), 915.
Vanama, V. S. K., & Rao, Y. S. (2019, 28 July-2 Aug. 2019). Change Detection Based Flood Mapping of 2015 Flood Event of Chennai City Using Sentinel-1 SAR Images. Paper presented at the IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium.
Vanthan, K., Sarintip, T., & Wayan, S. (2020). GIS-BASED FLOOD HAZARD MAPPING USING HEC-RAS MODEL: A CASE STUDY OF LOWER MEKONG RIVER, CAMBODIA. Geographia Technica, 15(1), 11. doi:10.21163/GT_2020.151.02.