การสกัดซัลเฟตพอลิแซ็กคาไรด์จากสาหร่ายสีแดง (Gracilaria fisheri) และการส่งเสริมการเจริญเติบโตของแบคทีเรียโพรไบโอติก
Extraction of Sulfated Polysaccharide from Red Seaweed (Gracilaria fisheri) and Growth Promotion of Probiotic Bacteria
Keywords:
ซัลเฟตพอลิแซ็กคาไรด์, พรีไบโอติก , โพรไบโอติก , สาหร่ายสีแดง, sulfated polysaccharide, prebiotic, probiotic, red seaweedAbstract
งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษากระบวนการสกัดซัลเฟตพอลิแซ็กคาไรด์จากสาหร่ายสีแดง (Gracilaria fisheri) ที่เก็บในเดือนกรกฎาคม (SP1) และเดือนตุลาคม (SP2) โดยศึกษาสภาวะในการสกัดด้วยน้ำที่สภาวะต่าง ๆ ได้แก่อัตราส่วนระหว่างสาหร่ายกับน้ำ 1:25, 1:35 และ 1:50 (w/v) อุณหภูมิในการสกัด 90, 100 และ 110 องศาเซลเซียส และระยะเวลาในการสกัด 40, 60 และ 90 นาที พบว่าสภาวะที่เหมาะสมในการสกัดซัลเฟตพอลิแซ็กคาไรด์จากสาหร่ายสีแดง คือ อัตราส่วนระหว่างสาหร่ายกับน้ำ 1:50 (w/v) อุณหภูมิ 100 องศาเซลเซียส และระยะเวลาในการสกัด 60 นาที ให้ปริมาณผลผลิตของสารสกัดเท่ากับ 13.80±4.24 เปอร์เซ็นต์ (SP1) และ 18.52±0.93 เปอร์เซ็นต์(SP2) และเมื่อนำมาทดสอบการเจริญของแบคทีเรียโพรไบโอติก Lactobacillus paracasei TISTR 2389 และ Lactobacillus acidophilus TISTR 875 พบว่าสารสกัดซัลเฟตพอลิแซ็กคาไรด์จากสาหร่ายสีแดง สามารถส่งเสริมการเจริญของ L. acidophilusTISTR 875 ได้ดีกว่าชุดกว่าชุดควบคุมที่ใช้น้ำตาลกลูโคสและ GOS เป็นแหล่งคาร์บอนอย่างมีนัยสำคัญทางสถิติ (p<0.05) จากผลการทดลองแสดงให้เห็นว่าสารสกัดซัลเฟตพอลิแซ็กคาไรด์จากสาหร่ายสีแดงมีศักยภาพที่จะใช้เป็นพรีไบโอติกในผลิตภัณฑ์อาหารเพื่อสุขภาพต่อไป The objective of this study was to optimize conditions to increase the yield of sulfated polysaccharides from red seaweed (Gracilaria fisheri) harvested between July (SP1) and October (SP2) 2020, extracted with distilled water. The effects of algae to water ratio (1:25, 1:35, and 1:50 (w/v), extraction time (40, 60, and 90 min), and extraction temperature (90, 100, and 110 °C) were investigated. The optimal conditions for sulfated polysaccharide extraction from red seaweed were algae materials to water 1:50 (w/v) at a temperature of 100 °C for 60 minutes, with an obtained the yields of 13.80±4.24% (SP1) and 18.52±0.93% (SP2). The utilization of sulfated polysaccharide derived from red seaweed was performed for the growth of Lactobacillus paracasei TISTR 2389 and Lactobacillus acidophilus TISTR 875. L. acidophilus TISTR 875 significantly utilized the sulfated polysaccharide for growth when compared with glucose and GOS as carbon sources (p<0.05). These results indicated that the sulfated polysaccharides from red seaweed could act as a potential prebiotic compound for development of the functional foods.References
A.O.A.C. (2000). Official method of analysis of association of official analysis chemist (17th Edition). Virginia: The Association of Official Analysis Chemist. Inc.
Barros, F.C.N.,.da Silva, D.C, Sombra, V.G., Maciel, J.S., Feitosa, J.P.A., Freitas, A.L.P., and de Paula, R.C.M. (2013). Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudate (J Agardh). Carbohydrate Polymers,92, 598-603
Buntin, N, de Vos WM., and Hongpattarakere, T. (2017). Variation of mucin adhesion, cell surface characteristics, and molecular mechanisms among Lactobacillus plantarum isolated from different habitats. Applied Microbiology and Biotechnology, 101, 7663–7674.
Charoensiddhi, S., Conlon, M.A., Vuaran, M.S., Franco, C.M.M., and Zhang, W. (2019). Impact of extraction processes on prebiotic potential of the brown seaweed Ecklonia radiate by in vitro human gut bacteria fermentation. Journal of Functional Foods, 24, 221–230.
Chen, X., Sun, Y., Hu, L., Liu, S., Yu, H., Li. R., and Wang, X., Li, P. (2018). In vitro prebiotic effects of seaweed polysaccharides. Journal of Oceanology and Limnology, 36, 926–932
Chi, Y., Li, Y., Zhang, G., Gao, Y., Ye, H., Gao J., and Wang, P. (2018). Effect of extraction techniques on properties of polysaccharides from Enteromorpha prolifera and their applicability in iron chelation. Carbohydrate Polymers, 181, 616–623.
Chikari, F., Han, J., Wang, Y., and Ao, W. (2020). Synergized subcritical-ultrasound-assisted aqueous two-phase extraction, purification, and characterization of Lentinus edodes polysaccharides. Process Biochemistry, 95, 297–306.
Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F. (1956). Calorimetric method for determination of sugars and related substance. Analytical Chemistry. 28, 350-356.
Fooks, L.J., and Gibson, G.R. (2003). Mixed culture fermentation studies on the effects of synbiotics on the human intestinal pathogens Campylobacter jejuni and Escherichia coli. Anaerobe, 9, 231-242.
Gibson, G.R. (2004). Prebiotic. Journal of Gastroenterology Supplement, 18, 287-298.
Han, R., Pang, D., Wen, L., You, L., Huang, R., and Kulikouskaya, V. (2019). In vitro digestibility and prebiotic activities of a sulfated polysaccharide from Gracilaria Lemaneiformis. Journal of Functional Foods, 64, 103652.
Imjongjairak, S., Tachaapaikoon, C., Pason, P., Waeonukul, R., Laohakunchit, N., and Ratanakhanokchai, K. (2014). Antioxidant activity of sulfate polysaccharide extracts of red seaweed (Gracilaria fisheri). Agricultural Science Journal, 45, 325-328.
Kong, Q., Dong, S., Gao, J., and Jiang, C. (2016). In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota. International Journal of Biological Macromolecules, 91, 867-871.
Kanjan, P., and Hongpattarakere, T. (2017). Prebiotic efficacy and mechanism of inulin combined with inulin degrading Lactobacillus paracasei I321 in competition with Salmonella. Carbohydrate Polymers, 169, 236-244.
Lekshmi, V.S., and Kurup, G.M. (2019). Sulfated polysaccharides from the edible marine algae Padina tetrastromatica protects heart by ameliorating hyperlipidemia, endothelial dysfunction and inflammation in isoproterenol induced experimental myocardial infarction. Journal of Functional Foods, 54, 22–31.
Maciel, J.S., Chaves, L.S., Souza, B.W.S., Teixeira, D.I.A., Freitas, A.L.P., Feitosa, J.P.A., and de Paula, R.C.M., (2008). Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae, Carbohydrate Polymer, 71,559-565.
Mehta, G.K., Meena, R., Prasad, K., Ganesan, M., and Siddhanta, A.K. (2010). Preparation of galactans from Gracilaria debilisand Gracilaria salicornia (Gracilariales, Rhodophyta) of Indian waters. Journal of Applied Phycology,22, 623–627.
Miller, G.L. (1959). Use of denitrosalicylic acid reagent for determination of reducing sugar. Analytic Chemistry, 31,426-428.
Olano-Martin, E., Mountzouris, K.C., Gibson, G.B., and Rastall, R.A. (2000). Development of prebiotic based on dextran and oligodextran. British Journal of Nutrition, 83, 247-255.
Poliana, O., Cavalcante, A., Glauber, C.L., Francisco, C.N.B., Luís E.C.C., Carla V.P.E.R., Willer, M.S., Venícios G.S., Clara, M.W.S.A., Ewerton, S.A., Edivânia, O.B.P., Ariclécio, C.O., Regina, C.M.P., and Ana, L.P.F. (2019). A novel antioxidant sulfated polysaccharide from the algae Gracilaria caudata: In vitro and in vivo activities. Food Hydrocolloids, 90, 28-34.
Rees, D.A. (1961). Enzymic Synthesis of 3, 6-anhydro-L-galactose within Porphyran from L-galactose 6-sulphate units, Biochemical Journal, 81, 347-352.
Rosemary, T., Arulkumar, A., Paramasivam, S., Portocarrero, A.M., and Miranda, J.M. 2019. Biochemical, micronutrient and physicochemical properties of the dried red seaweeds Gracilaria edulis and Gracilaria corticate. Molecules, 24, 1-14.
Ruangchuay, R., Luangthuvanit, C., Petsupa, N., Benjama, O., and Masniyom, P. (2006). Cultivation of pom nang seaweeds (Gracilaria spp.) as an alternative occupation for the lacal fishermen in Pattani bay, Pattani province. Thailand Science Research and Innovation.
Santad, W., Paiboon, T., Akkasit, J., Worrapanit, C., Preeya, H., Tipparat, H., Arunporn, I., and Buncha, O. (2011). Extraction and analysis of prebiotics from selected plants from southern Thailand. Songklanakarin Journal of Science and Technology (SJST), 33, 517-523.
Souza, B.W.S., Cerqueira, M.A., Bourbon, A.I., Pinheiro, A.C., Martins, J.T., Teixeira, J.A., Coimbra, M.A., and Vicente, A.A. (2012). Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids,27, 287-292.
Suvimol, C., Michael, A.C., Christopher, M.M.F., and Wei, Z. (2017). The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends in Food Science and Technology,70,20-33.
Xu, S.Y., Aweya, J.J., Li, N., Deng, R.Y., Chen, W.Y., Tang, J., and Cheong, K.L. (2018). Microbial catabolism of Porphyra haitanensis polysaccharides by human gut microbiota. Food Chemistry, 289,177-186.
Yun, L.Y., Li, D.Z., Yang, L., and Zhang, M. (2013). Hot water extraction and artificial simulated gastrointestinal digestion of wheat germ polysaccharide. International Journal of Biological Macromolecules, 123, 174-181.