การสกัดผลิตภัณฑ์พลอยได้จากเกล็ดปลานิลและเกล็ดจระเข้

Extraction of By-Products from Nile Tilapia and Siamese Crocodile Scales

Authors

  • ภัทวรินทร์ โต๊ะหมัดและ
  • ณัฐกานต์ กลิ่นโลกัย
  • ณัฐพงษ์ จันทราช
  • วันชัย วรวัฒนเมธีกุล
  • จีรภา หินซุย

Keywords:

แคลเซียม, ไคโตซาน , คอลลาเจน , เจลาติน , เศษเหลือจากการแปรรูปสัตว์น้ำ, Calcium, Chitosan, Collagen, Gelatin, Fish processing waste

Abstract

เกล็ดปลานิลเป็นเศษเหลือจากอุตสาหกรรมการแปรรูปเนื้อปลานิลแล่แช่เย็นแช่แข็ง เกล็ดจระเข้เป็นเศษเหลือที่เกิดจากกระบวนการแปรรูปเครื่องหนังจระเข้เกล็ดปลาและเกล็ดจระเข้อาจจะมีสารสำคัญที่สามารถใช้เป็นวัตถุดิบในการผลิต ผลิตภัณฑ์พลอยได้ที่เป็นประโยชน์ทางอุตสาหกรรมอาหารได้งานวิจัยนี้จึงมีวัตถุประสงค์เพื่อสกัดผลิตภัณฑ์พลอยได้จากเกล็ดปลานิลและเกล็ดจระเข้ให้เป็นผลิตภัณฑ์เสริมอาหาร การทดลองเริ่มด้วยการวิเคราะห์องค์ประกอบของเกล็ดปลานิลและเกล็ดจระเข้ด้วยเทคนิค Fourier-transform infrared (FTIR) Spectroscopyจากนั้นจึงปรับสภาพเกล็ดด้วยสารเคมี ได้แก่ โซเดียมคลอไรด์ โซเดียมไฮดรอกไซด์ กรดซัลฟิวริก และกรดซิตริก ตามลำดับ ก่อนที่จะนำเกล็ดที่ปรับสภาพด้วยสารเคมีแล้ว ไปสกัดเจลาตินที่อุณหภูมิ 50 องศาเซลเซียส เป็นเวลา 3 ชั่วโมง และตรวจสอบชนิดคอลลาเจนในเจลาตินที่สกัดได้ด้วย SDS-PAGE ส่วนเกล็ดที่เหลือนำมาสกัดไคติน-ไคโตซานด้วยโซเดียมไฮดรอกไซด์และกรดไฮโดรคลอริก และวิเคราะห์ระดับของดีอะซิทิเลชันของไคโตซานที่สกัดได้นอกจากนี้ ยังนำสารละลายกรดซัลฟิวริกจากขั้นตอนปรับสภาพเกล็ดด้วยสารเคมีก่อนหน้านี้มาตกตะกอนแคลเซียมด้วยผงโซเดียมคาร์บอเนต และวิเคราะห์ปริมาณแร่ธาตุต่าง ๆ ในผงแคลเซียมที่สกัดได้จากผล การวิเคราะห์ FTIR พบว่าเกล็ดปลานิลและเกล็ดจระเข้ประกอบด้วยคอลลาเจนไคติน และแคลเซียม ซึ่งสอดคล้องกับผลการสกัดที่ได้เจลาตินที่เป็นคอลลาเจนชนิดที่ I ไคติน-ไคโตซานที่ได้มีระดับการกำจัดหมู่อะซิทิลสูงกว่าร้อยละ 40 นอกจากนี้ เกล็ดปลานิลและเกล็ดจระเข้ยังจะมีปริมาณแร่ธาตุ ได้แก่ แคลเซียม ฟอสฟอรัส แมกเนเซียม และเหล็ก โดยที่ผงแคลเซียมจากเกล็ดจระเข้มีปริมาณแคลเซียมสูงถึงร้อยละ 35.96 จึงทำให้เกล็ดปลาและเกล็ดจระเข้เป็นเศษเหลือที่สามารถเพิ่มมูลค่าได้ โดยใช้เป็นวัตถุดิบในการผลิตผลิตภัณฑ์เสริมอาหารที่มีคุณค่าและยังสามารถลดปริมาณขยะที่อาจเป็นมลพิษต่อสิ่งแวดล้อม  Nile tilapia scales are waste from chill / frozen fish fillets processing industries. Crocodile scales are waste from crocodile leather making process. However, valuable substances in the scales of both tilapia and crocodile could be extracted that can be used as raw materials for by-products in food industries. The objective of this study was to extract by-products from Nile tilapia and Siamese crocodile scales for food supplements. The composition of functional groups contained in dried Nile tilapia and Siamese crocodile scales was determined by Fourier-transform infrared (FTIR) Spectroscopy. Tilapia and crocodile scales were treated with sodium chloride, sodium hydroxide, sulfuric acid and citric acid before gelatin extraction at 50 ºC for 3 h then collagen type were evaluated by SDS-PAGE. The residue scales were treated with sodium hydroxide and hydrochloric acid for chitin-chitosan extraction then degree of deacetylation and FTIR Spectroscopy were analyzed. Sodium carbonate was added in sulfuric acid treatment solution for calcium precipitation then minerals contents and FTIR Spectroscopy were analyzed. FTIR result was showed that the scales contained collagen, calcium and chitin. The FTIR result related to extraction of gelatin, chitin-chitosan and calcium powder.  Gelatin was collagen type I, chitin-chitosan was degree of deacetylation more than 40% and calcium powder contained calcium, phosphorus, magnesium and iron. Crocodile calcium powder contain high calcium (35.96 %). These extraction of valuable substances for food supplements were value and reduce waste and environment pollution.

References

Adan, R. I. Y. (2000). Crocodile farming: a multi-million dollar industry. SEAFDEC Asian Aquaculture, 22(3), 22-28.

Ali, A. M. M., Benjakuland, S., and Kishimura, H. (2017). Molecular characteristics of acid and pepsin soluble collagens from the scales of golden carp (Probarbus jullieni). Emirates J. Food and Agri, 29(6) ,450-457.

Aranaz, I., Mengíbar, M., Harris, R., Paños, I, Miralles, B., Acosta, N., Galed, G., and Heras, A. (2009). Functional Characterization of Chitin and Chitosan. Current Chem Biol, 3, 203-230

Bandekar, J. (1992). Amide modes and protein conformation. Biochem and Biophy Acta, 1120, 123-143.

Benjakul, S., Mad-Ali, S., and Sookchoo, P. (2017). Characteristics of Biocalcium Powders from Pre-Cooked Tongol (Thunnus tonggol) and Yellowfin (Thunnus albacores) Tuna Bones. Food Biophysics, 12(4), 412-421.

Benjakul, S., Thiansilakul, Y., Visessanguan, W., Roytrakul, S., Kishimura, H., Prodpran, T., and Meesane, J. (2010). Extraction and characterization of pepsin-solubilized collagens from the skin of bigeye snapper (Priacanthus tayenus and Priacanthus macracanthus). J. Sci. and Food Agri, 90, 132-138.

Boarin-Alcalde, L. and Graciano-Fonseca, G. (2016). Alkali process for chitin extraction and chitosan production from Nile tilapia (Oreochromis niloticus) scales. Lat Am J Aquat Res, 44(4), 683-688.

Chen, J., Li, L., Yi, R., Xu, N., Gaoand, R., Hong, B. (2016). Extraction and characterization of acid -soluble collagen from scales and skin of tilapia (Oreochromis niloticus). LWT-Food Sci. and Tech, 66, 453-459.

Chowdhury, S., Chakraborty, S., and Das, P. (2013). Adsorption of crystal violet from aqueous solution by citric acid modified rice straw: equilibrium, kinetics and thermodynamics”, J. Separation Sci. and Tech, 48(9), 1339-1348.

Cimdina, L. B.,and Borodajenko, N. (2012). Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy. Thesis. Riga Technical University. Latvia.

Duan, R., Zhang, J., Dua, X., Yao, X., and Konno, K. (2009). Properties of collagen from skin, scale and bone of carp (Cyprinus carpio). Food Chem, 112, 702-706.

El-Rashidy, A. A., Gad, A., El-Hay, A., Abu-Hussein, G., Habib, S. I., Badr, N. A., and Hashem, A. A. (2015). Chemical and biological evaluation of Egyptian Nile Tilapia (Oreochromis niloticus) fish scale collagen. In. J. of Bio. Macro, 79, 615-626.

Feist, B. and Mikula, B. (2014). Preconcentration of heavy metals on activated carbon and their Determination in fruits by inductively coupled plasma optical emission spectrometry. Food Chem, 147, 302-306.

Habelitz, S., Marshall, S. J., Marshall-Jr, G. W., and Balooch, M. (2001). Mechanical properties of human dental enamel on the nanometre scale. Archives of Oral Biology,46(2),173-183.

Hllaing, M. M. (2019). Crocodile conservation and breeding management –issues and constraints: experience of Myanmar. Fish for the People, 17(2), 26-34.

Hajji, S., Ghorbel-Bellajji, O., Younes, K., Jellouli, I., and Nasri, M. (2015). Chitin extractionfrom crab shells by Bacillus bacteria. Biologicalactivities of fermentedcrabsupernatants. In. of J. Bio. Macro, 79, 167 -173.

Huang, C. Y., Kuo, J. M., Wu, S. J., and Tsai, H. T. (2016). Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.), by a novel extrusion-hydro-extraction process. Food Chem, 190, 997-1006.

Huang, Y. M., Zou, Y. Q., and Jiang, B. Q. (2015). Process and Models of Decalcification of Bighead carp scale by hydrochloric acid, International Conference on Material Science and Application (ICMSA 2015). Environmental and Chemical Engineering Nanchang University, P.B. China.

Ikoma, T., Kobayashi, H., Tanaka, J., Walshand, D., and Man, S. (2003). Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. Int. and J. Bio. Macro, 32(3), 199-204.

Jackson, M., Choo, L. P., Watson, P. H., Hallidayand, W. C., Mantsch, H. H. (1995). Beware of connective tissue proteins: Assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochimica and Biophysica Acta (BBA)-Molecular Basis of Disease, 1270, 1–6.

Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., and Shahidi, F. (2010). Comparative study on characteristics of gelatin from the skins of brown banded bamboo shark and blacktip shark as affected by extraction conditions. Food Hydrocolloids, 24, 164 –171.

Kumari, S., Rath, P. K., Kumarand, A. S. H., and Tiwari, T. N. (2015). Extraction and Characterization of chitin and chitosan from fishery waste by chemical method. Environment and Tech. In., 3, 77-85.

Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of head of Bacteriophage T4. Nature, 277, 680-685.

Liu, Y., Li, B., Zhag, K., Li, J., and Hou, H. (2019). Novel hard capsule prepared by tilapia (Oreochromis niloticus) scale gelatin and Konjac glucomannan: Characterization, and in vitro dissolution. Carbohydrate Polymers, 206, 254-261.

Mahmood, K., Muhammad, L., Ariffin, F., Razak, H. K. B. A. and Sulaiman, S. (2016). Review of Fish Gelatin Extraction, Properties and Packaging Applications. Food Sci Quality Management, 56, 47-59.

Martins, D. E., Medeiros, V. P. D., Wajchenbery, M., Paredes-Gamero, E. J., Lima, M., and Reginato, R. D. (2018). Changes in human intervertebral disc biochemical composition and bony end plates between middle and old age. PLoS ONE, 13(9), e0203932.

Martins, M. E. O., Sousa, J. R., Claudino, R. L., Lino, S. C. O., Vale, D. A., Silva, A. L. C., Morais, J. P. S., Filho, M. S. M. S., and De Souza, B.W.S. (2018). Thermal and Chemical Properties of Gelatin from Tilapia (Oreochromis niloticus) Scale. J Aquatic Food Product Technol, 27, 1120-1133.

Muyonga,J. H., Cole, C. G. B., and Duodu, K. G. (2004). Characterization of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chem, 85, 81–89.

Ngo, D. H., Qian, Z. J., Ryu, B., Park, J. W., and Kim, S. K. (2010). In vitro antioxidant activity of A peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical- mediated oxidative systems. J. of functional Food, 2, 107 - 117.

Panda, N. N., Pramanik, K., and Sukla, L B. (2014). Extraction and characterization of biocompatible hydroxyapatite from fresh water fish scales for tissue engineering scaffold. Bioprocess Biosyst, 37, 433-440.

Piccirillo, C., Pereira, S. I. A., Marques, A. P. G. C., Pullar, R. C., Tobaldi, D. M., Pintado, M. E., and Castro, P. M. I. (2013). Bacteria immobitisation on hydroxyapatite surface for heavy metals removal. J. of Environmental Manage, 121, 87-95.

Ramasamy, P. P., and Shanmugam, A. (2015). Characterizationand wound healing property of collagenchitosanfilm from Sepia kobiensis (Hoyle, 1885). Int. of J. Bio. Macro, 74, 93-102.

Raynaud, S., Champion, E., Bernache-Assollantand, D., and Thomas, P. (2002). Calcium phosphate apatites with variable Ca/P atomic ratio I. synthesis, characterization and thermal stability of powders. Biomaterials, 23(4), 1065-1072.

Sae-leaw, T., Benjakul, S., and O’Brien, N. M. (2016). Effects of defatting and tannic acid incorporation during extraction on properties and fishy odor of gelatin from seabass skins. LWT – Food Sci. and Tech, 65, 661 –667.

Silva, T. H., Moreira-Silva, J., Marques, A. L. P., Domingues, A., Bayon, Y., and Reis, R. L. (2014). Marine origin collagens and its potential applications. Marine Biomaterials, 12, 5881-5901.

Singh, A. Kelkar, N., Natarajan, K., and Selvaraj, S. (2021). Review on the extraction of calcium supplements from eggshells to combat waste generation and chronic calcium deficiency. Envir Sci Poll Res, 2,46985–46998.

Shoulders, M. D., and Raines, R. T. (2009). Collagen structure and stability. Annu Rev Biochem, 78, 929-958.

Sukkwai, S., Kijroongrojana, K., and Benjakul, (S. 2012). Extraction of gelatin from bigeye snapper (Priacanthus tayenus) skin for gelatin hydrolysate production. Int. and Food Research J, 18(3), 1129 –1134.

Trailokya, A., Srivastava, A., Bhole, M., and Zalte, N. (2017). Calcium and Calcium Salts. J Assoc Phys India, 65, 100-103.

Tohmadlea, P., Worawattanamateekul, W., and Hinsui, J. (2019). Tilapia Gelatin: Elimination Fishy Odor”, Rajamangala University of Tech. Srivijaya Research J, 11(3), 1-9.

Tosun, D.D. (2013). Review of crocodile farming and its present state in global aquaculture. J. of FisheriesSciences.com, 7(1), 43-57.

Veerapan, V. (2011). Extraction of chitosan from tilapia scale for film processing product. Thai Thesis. Chiang Mai University. Thailand.

Weng, W., and Wu, F. (2015). Water resistance and mechanical property improvement of tilapia (Tilapia zillii) scale gelatin films by dehydrated thermal treatment. J. of Food Sci. and Tech, 52, 3358 - 3366.

Weng, W., and Zheng, H. (2015). Effect of transglutaminase on properties of tilapia scale gelatin films incorporated with soy protein isolate. Food Chem, 169, 255-260.

Weng, W., Zheng, H., and Su, W. (2014). Characterization of edible films based on tilapia (Tilapia zilli) scale gelatin with different extraction pH. Food Hydrocolloids, 41, 19-26.

Yasmeen, S., Kanti Kabiraz, M., Saha, B., Rakibul Qadir, M., Abdul Gafur, M., and Masum, S. Md. (2015). Chromium (VI) Ions Removal from Tannery Effluent using Chitosan-Microcrystalline Cellulose Composite as Adsorbent. International Research Journal of Pure and Applied Chemistry, 10(4), 1-14.

Younes, I., Hajji, S., Frachet, V., Rinaudo, M., Jellouli, K., and Nasri, M. (2014). Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities. Int. of J. Bio. Macromolecular, 69, 489-498.

Zhang, Y., Tu, D., Shen, Q., and Dai, Z. (2019). Fish Scale Valorization by Hydrothermal Pretreatment Followed by Enzymatic Hydrolysis for Gelatin Hydrolysate Production. Molecules, 24(2998), 1-14.

Zhou, Y., Wang, R., Li, L., Xia, X., and Sun, Z. (2006). Inferring functional linkages between proteins from evolutionary scenarios. J. of Molecular Bio, 359(4), 1150 - 1159.

Downloads

Published

2023-06-09