การพัฒนาโมเดลสำหรับวิเคราะห์รูปแบบการกระจายตัว และการเกิดก๊าซไนโตรเจนไดออกไซด์ ด้วยข้อมูลดาวเทียม Sentinel-5P บริเวณประเทศไทย

Model Development for Analyzing the Distribution Patterns of Nitrogen Dioxide Using Sentinel-5P Satellite Data in Thailand

Authors

  • สิทธิณัฐ มนเทียรอาสน์
  • อริศรา เจริญปัญญาเนตร
  • พลภัทร เหมวรรณ

Keywords:

ปริมาณค่าความเข้มข้นก๊าซไนโตรเจนไดออกไซด์, สมการถดถอย, เซนติเนลไฟว์พี, nitrogen dioxide concentration, regression model, sentinel-5P

Abstract

ก๊าซไนโตรเจนไดออกไซด์เป็นหนึ่งในสารมลพิษทางอากาศที่ประเทศไทยได้รับผลกระทบเป็นเวลานาน โดยในการศึกษาครั้งนี้มีวัตถุประสงค์ 2 ประการ ได้แก่ 1) เพื่ออธิบายสถานการณ์ปริมาณค่าความเข้มข้นก๊าซไนโตรเจน ไดออกไซด์ในรูปแบบมิติเชิงพื้นที่และเชิงเวลา และวิเคราะห์ความสัมพันธ์ของปัจจัยที่ส่งผลต่อปริมาณค่าความเข้มข้น ก๊าซไนโตรเจนไดออกไซด์ด้วยวิธีการวิเคราะห์สถิติเชิงพื้นที่ และ 2) เพื่อสร้างโมเดลที่เหมาะสมต่อการประมาณค่าความเข้มข้นก๊าซไนโตรเจนไดออกไซด์บริเวณประเทศไทยในช่วงเดือนมกราคม 2562 ถึงเดือนธันวาคม 2563 โดยใช้ข้อมูลดาวเทียม Sentinel-5P ร่วมกับข้อมูลจากสถานีตรวจวัดภาคพื้นดินด้วยสมการถดถอยเชิงเส้น (Linear regression model) ผลการศึกษาพบว่า สถานการณ์ปริมาณค่าความเข้มข้นก๊าซไนโตรเจนไดออกไซด์บริเวณประเทศไทยในช่วงปี 2562 มีค่าเฉลี่ย รวมรายปี สูงกว่าปริมาณค่าความเข้มข้นก๊าซไนโตรเจนไดออกไซด์ในช่วงปี 2563 มีค่าเท่ากับ 10.95 ppb และ 10.67 ppb ตามลำดับ โดยมีค่าเฉลี่ยสูงสุดในช่วงฤดูแล้งระหว่างเดือนพฤศจิกายนถึงเดือนเมษายน ในช่วงเดือนมกราคม 2562 มีค่าเฉลี่ย เท่ากับ 18.37 ppb และมีค่าเฉลี่ยต่ำสุดในช่วงฤดูฝน ระหว่างเดือนพฤษภาคมถึงเดือนตุลาคม ในช่วงเดือนมิถุนายน 2563 มีค่าเฉลี่ยเท่ากับ 8.05 ppb นอกจากนี้ภูมิภาคที่มีปริมาณค่าความเข้มข้นก๊าซไนโตรเจนไดออกไซด์เฉลี่ยสูงสุด ได้แก่ ภาคกลาง ณ สัปดาห์ที่ 4 เดือนมกราคม 2562 มีค่าเท่ากับ 40.69 ppb และมีค่าเฉลี่ยต่ำสุดบริเวณภาคเหนือ ณ สัปดาห์ที่ 1 เดือนกันยายน 2562 มีค่าเท่ากับ 2.84 ppb โดยโมเดลที่เหมาะสมต่อการประมาณค่าความเข้มข้นก๊าซไนโตรเจนไดออกไซด์ ได้แก่ คิวบิคโมเดล (Cubic model) มีค่าสัมประสิทธิ์การตัดสินใจ (R2) และค่าความแม่นยำ (Accuracy) เท่ากับ 0.72 และ 70.29 เปอร์เซ็นต์ ตามลำดับ  Nitrogen dioxide (NO2) is one of air pollution that Thailand has been affected for many years. The aims of this study are separated into two objectives. First, to explain the situation of nitrogen dioxide concentration in spatial temporal and analyze the relationship of factors affecting that led to generation of nitrogen dioxide using by spatial statistic. Secondly, finding a suitable model to be estimated the concentration of nitrogen dioxide from Sentinel-5P data and ground station data using linear regression model during January 2019 to December 2020 in Thailand. As a result, the average of nitrogen dioxide concentration in 2019 has higher than the nitrogen dioxide concentration in 2020 the value was 10.95 ppb and 10.67 ppb respectively. The maximum total annual average of nitrogen dioxide concentration occur during Dry season (between Novemberand April) in January 2019 (18.37 ppb) the minimum average occur during Wet season (between May and October) in June 2020(8.05 ppb). In addition, the regions with the highest average of nitrogen dioxide concentration was central region during the 4th week of January 2019 (40.69 ppb) and the lowest average concentration of nitrogen dioxide was found in northern region during the first week of September 2019 (2.84 ppb). The suitable model for estimating the concentration of nitrogen dioxide was Cubic model with coefficient of determination (R2) at 0.72 and it model accuracyoverall was 70.29 %

References

Adame, J. A., Gutierrez-Alvarez, I., Bolivar, J. P., & Yela, M. (2020). Ground-based and OMI-TROPOMI NO2 measurements at El Arenosillo observatory: Unexpected upward trends. Environmental Pollution, 264, 114771.

Aman, N., Manomaiphiboon, K., Pengchai, P., Suwanathada, P., Srichawana, J., & Assareh, N. (2019). Long-term observed visibility in eastern Thailand: Temporal variation, association with air pollutants and meteorological factors, and trends. Atmosphere, 10(3), 122.

Bootdee, S., Wongtim, S., Kerdtawee, N., Phantu, S., and Chuathong, N. (2019). Spatial and temporal Variation of ambient nitrogen dioxide concentration in Pattaya city, Chon Buri province. The Journal of KMUTNB, vol 29, no.3, pp. 481-494, (in Thai)

Burrows, J. P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A.,. & Perner, D. (1999). The global ozone monitoring experiment (GOME): Mission concept and first scientific results. Journal of the Atmospheric Sciences, 56(2), 151-175.

Charoenpanyanet, A., & Hemwan, P. (2019). Suitable Model for Estimation of PM2. 5 Concentration Using Aerosol Optical Thickness (AOT) and Ground based Station: Under the Dome in Upper Northern, Thailand. International Journal of Geoinformatics, 15(3), 33-43.

Cheewinsiriwat, P. (2016). Estimation of nitrogen dioxide concentrations in Inner Bangkok using Land Use Regression modeling and GIS. Applied Geomatics, 8(2), 107-116.

Chen, L., Bai, Z., Kong, S., Han, B., You, Y., Ding, X., Du, S., Liu, A. (2010). A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. Journal of Environmental Sciences, 22(9), 1364–1373.

Chen, L., Wang, Y., Li, P., Ji, Y., Kong, S., Li, Z., Bai, Z. (2012). A land use regression model incorporating data on industrial point source pollution. Journal of Environmental Sciences, 24(7), 1251–1258.

Cros, C. J., Terpeluk, A. L., Crain, N. E., Juenger, M. C., & Corsi, R. L. (2015). Influence of environmental factors on removal of oxides of nitrogen by a photocatalytic coating. Journal of the Air & Waste Management Association, 65(8), 937-947.

Elminir, H. K. (2005). Dependence of urban air pollutants on meteorology. Science of the total environment, 350(1-3), 225-237.

Hochadel, M., Heinrich, J., Gehring, U., Morgenstern, V., Kuhlbusch, T., Link, E., Wichmann, H.E., Kramer, U. (2006). Predicting long-term average concentrations of traffic-related air pollutants using GIS-based information. Atmospheric Environment, 40(3), 542–553.

Georgoulias, A. K., van der A, R. J., Stammes, P., Boersma, K. F., & Eskes, H. J. (2019). Trends and trend reversal detection in 2 decades of tropospheric NO 2 satellite observations. Atmospheric Chemistry and Physics, 19(9), 6269-6294.

Janta, R., Kaewrat, J., Rattikansukha, C., &Sichum, S. (2020). Measurement of nitrogen dioxide concentration in traffic areas of Nakhon Si Thammarat Province and health risk assessment. The Journal of KMUTNB, vol, 30(3), 481-494. (in Thai)

Josipovic, M., Annegarn, H. J., Kneen, M. A., Pienaar, J. J., & Piketh, S. J. (2010). Concentrations, distributions and critical level exceedance assessment of SO2, NO2 and O3 in South Africa. Environmental monitoring and assessment, 171(1), 181-196.

Lalitaporn, P., Kurata, G., Matsuoka, Y., Thongboonchoo, N., & Surapipith, V. (2013). Long-term analysis of NO2, CO, and AOD seasonal variability using satellite observations over Asia and intercomparison with emission inventories and model. Air Quality, Atmosphere & Health, 6(4), 655-672.

Lu, M., Schmitz, O., Vaartjes, I., & Karssenberg, D. (2019). Activity-based air pollution exposure assessment: differences between homemakers and cycling commuters. Health & place, 60, 102233.

Pharasit, M., Chaiyakarm, T. (2019). Geoinformatics Application on Air Quality Assessment: A Case Study in Bangkok. Thai Science and Technology Journal (TSTJ), Vol. 28 No. 5 May 2020. (in Thai)

Shikwambana, L., Mhangara, P., & Mbatha, N. (2020). Trend analysis and first time observations of sulphur dioxide and nitrogen dioxide in South Africa using TROPOMI/Sentinel-5 P data. International Journal of Applied Earth Observation and Geoinformation, 91, 102130.

Stranger, M., Krata, A., Kontozova-Deutsch, V., Bencs, L., Deutsch, F., Worobiec, A., ... & Van Grieken, R. (2008). Monitoring of NO2 in the ambient air with passive samplers before and after a road reconstruction event. Microchemical Journal, 90(2), 93-98.

Zheng, F., Xia, Y., Ge, Q., & Cai, K. (2020, December). Comparison of Satellite-retrieved NO2 Vertical Column Density with Ground-level NO2 concentration in a provincial scale region. In IOP Conference Series: Earth and Environmental Science (Vol. 615, No. 1, p. 012123). IOP Publishing.

Zyrichidou, I., Koukouli, M. E., Balis, D. S., Katragkou, E., Melas, D., Poupkou, A., ... & Richter, A. (2009). Satellite observations and model simulations of tropospheric NO 2 columns over south-eastern Europe. Atmospheric Chemistry and Physics, 9(16), 6119-6134.

Downloads

Published

2023-06-09