การสังเคราะห์ขั้วไฟฟ้าคาร์บอนกัมมันต์จากฝักบัว สำหรับประยุกต์ใช้เป็นตัวเก็บประจุยิ่งยวด

The Synthesis of Activated Carbon Electrodes from Lotus Seedpods for Supercapacitor Application

Authors

  • ณัฐริกา บุญรักษา
  • สุริยา หนองแก
  • คชรินทร์ ตังพานิช
  • ขวัญฤทัย วงศาพรม

Keywords:

คาร์บอนกัมมันต์ , ฝักบัว, คาร์บอไนเซชัน , ขั้วไฟฟ้า, ตัวเก็บประจุยิ่งยวด, Activated carbon, Lotus seedpods, Carbonization, Electrode, Supercapacitors

Abstract

งานวิจัยนี้ได้เตรียมคาร์บอนกัมมันต์จากฝักบัว (AC-LS) ด้วยกระบวนการคาร์บอไนเซชันและกระตุ้นที่อุณหภูมิ 700, 800 และ 900 °C ตามลำดับ โครงสร้างสัณฐานวิทยา พื้นที่ผิวและสมบัติทางเคมีไฟฟ้าของตัวอย่างถูกตรวจสอบด้วยเทคนิค X-ray diffraction (XRD), Raman spectroscopy (Raman), Field emission scanning electron microscope (FE-SEM), N2 adsorption-desorption, Cyclic voltammetry (CV) และ Galvanostatic charge/discharge (GCD) คาร์บอนกัมมันต์ที่เตรียมได้มีพื้นที่ผิวจำเพาะ 631.90 m2/g และมีเส้นผ่านศูนย์กลางรูพรุนเฉลี่ย 3.3 nm ส่งผลให้มีประสิทธิภาพในการกักเก็บประจุที่โดดเด่น (113 F/g ที่ 1A/g) ประสิทธิภาพและเสถียรภาพรอบในการใช้งานที่ดีเยี่ยม (96% ของการกักเก็บประจุนาน 1,000 รอบ ที่ 5A/g) ในสารละลายอิเล็กโทรไลด์ 6 M KOH ดังนั้นการสังเคราะห์คาร์บอนกัมมันต์จากฝักบัว ที่เป็นชีวมวลมีในธรรมชาติมีต้นทุนต่ำและมีพื้นที่ผิวจำเพาะที่สูง จึงเหมาะจะนำมาประยุกต์ใช้เป็นวัสดุขั้วไฟฟ้าของตัวเก็บประจุยิ่งยวด  This research, prepared activated carbon from lotus seedpods (AC-LS) by carbonization and activation processes at 700, 800, and 900 °C, respectively. The structure, morphology, surface area, and electrochemical properties of the samples are investigated by X-ray Diffraction (XRD), Raman spectroscopy (Raman), Field emission scanning electron microscopy (FE-SEM), N2 adsorption-desorption, Cyclic voltammetry (CV) and Galvanostatic charge/discharge (GCD). The activated carbon exhibits a relatively high specific surface area of 631.90 m2/g and an average pores diameter of 3.3 nm. Such the sample shows outstanding capacitive performance (113 F/g at 1 A/g), good rate capability, and excellent cycling stability (96% of capacitance retention after 1,000 cycles at 5 A/g) in 6 M KOH electrolyte. Therefore, the synthesis of activated carbon from the lotus seedpods is that the biomass exists in nature, has a low cost, and high specific surface area. It has suitable to be applied as the electrode material for the supercapacitor.

References

Bei, L., Xiahong, Z., Hongbiao, C., Yijiang, L., & Huaming, L. (2016). Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance. Electrochimica Acta, 208, 55-63.

Chengshuai, C., He, W., Yunqiang, Z., Shulan, W., Xuan, L., & Li, L. (2019). Fabrication of Hierarchical Porous Carbon Frameworks from Metal-Ion-Assisted Step-Activation of Biomass for Supercapacitors with Ultrahigh Capacitance. ACS Sustainable Chemistry & Engineering, 7, 10763-10772.

Conglai, L., Lili, J., Xiaoliang, W., Yuting, J., Deren, Y., Caikun, W., Tong, W., & Zhuangjun, F. (2015). Facile synthesis of functionalized porous carbon with three-dimensional interconnected pore structure for high volumetric performance supercapacitors. Carbon, 93, 412-420.

Hao, C., Duo, L., Zhehong, S., Binfu, B., Shuyan, Z., & Limin, W. (2015). Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials. Electrochimica Acta, 18, 241-251.

Jiazhen, Z., Anran, L., & Youcai, Z. (2018). Preparation and characterisation of activated carbon from waste tea by physical activation using steam. Journal of the Air & Waste Management Association, 68, 1269-1277.

Jie, C., Die, Z., Wen-Ping, D., Zhen-Zhou, Z., Guo-Zhen, W., Jing-Ren, H., Hai-Bo, W., Peng, F., & Tian-Lei, S. (2020). Promising Rice-Husk-Derived Carbon/Ni(OH)2 Composite Materials as a High-Performing Supercapacitor Electrode. ACS Omega, 5(46), 29896–29902.

Kaiwen, Z., Yuanyuan, L., Ming, Z., Xi, Y., Mengyan, Z., Ling, S., & Jue, C. (2017). The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors. Journal of Power Sources, 366, 270-277.

Kalpana, D., Omkumar, K.S., Suresh Kumar, S., & Renganathan, N.G. (2006). A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor. Electrochimica Acta, 52, 1309–1315.

Keyu, X., & Bingqing, W. (2014). Materials and Structures for Stretchable Energy Storage and Conversion Devices. Advanced Materials, 26, 3592–3617.

Li, S., Chungui, T., Meitong, L., Xiangying, M., Lei, W., Ruihong, W., Jie, Y., & Honggang, F. (2013). From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. Journal of Materials Chemistry A, 1, 6462–6470.

Marta, S., & Antonio, B.F. (2013). Fabrication of porous carbon monoliths with a graphitic framework. Carbon, 56, 155-166.

Montree, S. (2013). Innovative Nanotechnology of Energy Storage: Supercapacitors. Kasetsart Engineering Journal, 26(85), 9-26. (inThai)

Wentian, G., Marta, Sevilla., Alexandre, Magasinski., Antonio, B.F., & Gleb, Y. (2013). Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Energy & Environmental Science, 6(8), 2465–2476.

Xueliang, L., Changlong, H., Xiangying, C., & Chengwu, S. (2010). Preparation and performance of straw based activated carbon for supercapacitor in non-aqueous electrolytes. Microporous and Mesoporous Materials, 131, 303–309.

Yong-Seo, P., Korsak, T., Teresa, K., Soon-Teck, J., Kyung-Sik, H., Buk-Gu, H., Ja-Yong, C., Jae-Gill, Y., Hyun-Ju, K., & Shela, G. (2009). Bioactive Compounds and Antioxidant and Antiproliferative Activities of Korean White Lotus Cultivars. Journal of Medicinal Food, 12(5), 1057-1064.

Yueming L., & Xi, L. (2014). Activated carbon/ZnO composites prepared using hydrochars as intermediate and their electrochemical performance in supercapacitor. Materials Chemistry and Physics, 148(1-2), 380-386.

Yuqing, D., Haihui, Z., Feifei, X., Bijun, X., Xianwen, Y., Yong, W., & Yongsheng, Y. (2010). Inhibition effect of procyanidins from lotus seedpod on mouse B16 melanoma in vivo and in vitro. Food Chemistry, 122, 84–91.

Zhi-Qun, L., Bi-Jun, X., & Er-Ling, Y. (2005). Isolation, Characterization, and Determination of Antioxidative Activity of Oligomeric Procyanidins from the Seedpod of Nelumbo nucifera Gaertn. Journal of Agricultural and Food Chemistry, 53, 2441-2445.

Downloads

Published

2023-06-09