การติดตามปรากฏการณ์มลภาวะทางแสงในจังหวัดนครราชสีมา ด้วยภาพถ่ายจากดาวเทียมแสงไฟในช่วงเวลากลางคืน

Monitoring Trends in Light Pollution in Nakhon Ratchasima Province Based on Nighttime Satellite Imagery

Authors

  • วรัญญา ศิลายศ
  • ธัญญรัตน์ ไชยคราม

Keywords:

มลภาวะทางแสง , ภาพถ่ายจากดาวเทียมแสงไฟในช่วงเวลากลางคืน , ลักษณะการใช้ที่ดินประเภทเมือง, ความหนาแน่นของประชากร, Light Pollution, Nighttime Light Satellite Imagery, Urban Land Use, Population Density

Abstract

บทความวิจัยนี้มีวัตถุประสงค์เพื่อวิเคราะห์และติดตามการขยายตัวของมลภาวะทางแสงจากภาพถ่ายแสงไฟในช่วงเวลากลางคืนในระหว่างปี 2013 – 2021 ในพื้นที่จังหวัดนครราชสีมา ด้วยภาพถ่ายจากดาวเทียมแสงไฟในช่วงเวลากลางคืน (Night Time Light: NLT) ดาวเทียม Suomi National Polar-orbiting Partnership (Suomi-NPP) ในระบบ Visible Infrared Imager Radiometer Suite (VIIRS) ด้วยหลักการจำแนกแบบกำกับดูแล (Supervised Classification) เปรียบเทียบกับหลักการจำแนกแบบไม่กำกับดูแล (Unsupervised Classification) ผลการจำแนกและติดตามสอดคล้องกันทั้งสองวิธี สามารถแบ่งระดับมลภาวะทางแสงได้ 5 ระดับ คือ ปริมาณความเข้มข้นของมลภาวะทางแสง ในระดับมากที่สุด มีค่า 18.17 – 86.01 ระดับมาก มีค่า 8.38–18.16 ระดับปานกลาง มีค่า 3.41–8.37 ระดับน้อย มีค่า 0.91 –3.40 และระดับน้อยมาก มีค่า 0.01–0.90 ซึ่งจะพบว่า พื้นที่ส่วนใหญ่ที่ได้รับมลภาวะทางแสงจะเป็นพื้นที่ในเขตเมือง ซึ่งมีพื้นที่ที่ได้รับมลภาวะทางแสงในระดับมากที่สุด มาก ปานกลาง น้อย และน้อยที่สุด และจะเพิ่มขึ้นในทุกช่วงปี เป็นขนาดพื้นที่ 39.93, 116.63, 353.05, 1,741.79 และ 81.55 ตารางกิโลเมตร ตามลำดับ โดยมีรูปแบบการขยายตัวของมลภาวะทางแสงไปตามเส้นทางคมนาคม โดยเฉพาะถนนมิตรภาพ ซึ่งเป็นถนนสายหลักที่เปรียบเสมือนประตูเข้าสู่ภาคตะวันออกเฉียงเหนือที่ตัดผ่านพื้นที่ตัวเมืองของจังหวัดนครราชสีมา และจะกระจุกตัวหนาแน่นมากในพื้นที่ใจกลางเมืองของจังหวัด หลังจากนั้นวิเคราะห์หาความสัมพันธ์ ระหว่างมลภาวะทางแสงไฟในช่วงเวลากลางคืนกับความหนาแน่นของประชากร ด้วยหลักการวิเคราะห์ด้วยสมการถดถอยเชิงเส้น (Simple Linear Regression Analysis) โดยใช้สูตรของเพียร์สัน (Pearson’s Correlation Coefficient) ที่นัยสำคัญทางสถิติ 0.05 ซึ่งในงานวิจัยฉบับนี้ พบว่า มีค่าสัมประสิทธิ์ (R 2) มีค่าเท่ากับ 0.4956 ซึ่งแสดงความสัมพันธ์ในระดับปานกลาง  This article aimed to analyze and monitor expansion of light pollution from nighttime light (NLT) images during 2013 – 2021 in Nakhon Ratchasima province using nighttime satellite imagery from Suomi National Polar-orbiting Partnership (Suomi-NPP), Visible Infrared Imager Radiometer Suite (VIIRS) based on supervised classification and compared to unsupervised classification. Classification and monitoring results of both methods are consistent. Light pollution could be classified into 5 levels, namely, the highest intensity of light pollution ranged from 18.17 - 86.01, the high intensity ranged from 8.38 - 18.16, the medium intensity ranged from 3.14 - 8.37, the low intensity ranged from 0.91 – 3.40, and the lowest intensity ranged from 0.01 – 0.90. It was found that urban areas were more likely to have light pollution at the highest, high, medium, low and the lowest intensity. Light pollution has intensified every year in the areas of 39.93, 116.63, 353.05, 1,741.79, and 81.55 square kilometers, respectively. The light pollution expansion followed transportation routes, especially Mittraphap Road, the main road considered as the gateway to the northeast region that passes through Nakhon Ratchasima, and was concentrated in the inner city of the province. The analysis of the relationship between nighttime light pollution and population density was conducted using simple linear regression analysis and Pearson’s correlation coefficient. The statistical significance level was set at 0.05. According to the study, the coefficient of determination (R2) light pollution and population density was 0.4956, showing a moderate level of relationship

References

Chalkias, C., Petrakis, M., Psiloglou, B., & Lianou, M. (2006). Modelling of light pollution in suburban areas using remotely sensed imagery and GIS. J. Environ. Manag, 79, 57 - 63.

H A Prastyo, D Herdiwijaya. (2019). Spatial Analysis of Light Pollution Dynamics Around Bosscha Observatory and Timau National Observatory Based on VIIRS-DNB Satellite Images. 10th Southeast Asia Astronomy Network (SEAAN). IOP Conf. Series: Journal of Physics: Conf. Series 1231 (2019) 012002. doi:10.1088/1742-6596/1231/1/012002.

Metta Kengchuwong. (2018). Study on Particulate Matter in Ambient Air and Impacts to People in Urban Area of Maha Sarakham Municipality. Environmental Science Programme/ Faculty of Science and Technology, Rajabhat Maha Sarakham University. (in Thai)

Pavan Kumara; Sufia Rehmana; Haroon Sajjada; Bismay Ranjan Tripathy; Meenu Ranic and Sourabh Singhc. (2019). Analyzing trend in artificial light pollution pattern in India using NTL sensor's data. Urban Climate, 27, 272-283. doi: 10.1016/j.uclim.2018.12.005

Pedithep Youyuenyong. (2019). Light Pollution. Legal Consultation Center Faculty of Law Chiang Mai University.

Pengpeng Han; Jinliang Huang; Rendong Li; Lihui Wang; Yanxia Hu; Jiuling Wang and Wei Huang. (2014). Monitoring Trends in Light Pollution in China Based on Nighttime Satellite Imagery. Remote Sensing, 6(6), 5541-5558. doi:10.3390/rs6065541.

Wenli Xiang and Minghong Tan (2017). Changes in Light Pollution and the Causing Factors in China’s Protected Areas, 1992–2012. Remote Sensing, 9(10), 1026. doi:10.3390/rs9101026.

Downloads

Published

2023-06-09