การประเมินอัตรารอดของหญ้าทะเลที่ได้รับการฟื้นฟูด้วยภาพถ่าย จากอากาศยานไร้คนขับบนแพลตฟอร์ม Google Earth Engine

Survival Rate Assessment of Transplanted Seagrass Using Unmanned Aerial Vehicles Imagery on Google Earth Engine

Authors

  • พีรดนย์ เกิดผล

Keywords:

อากาศยานไร้คนขับ, Google Earth Engine, ฟื้นฟูหญ้าทะเล, อ่าวพังงา จังหวัดพังงา, Unmanned Aerial Vehicle (UAV), Seagrass restoration, Phangnga bay Thailand

Abstract

กรมทรัพยากรทางทะเลและชายฝั่ง ดำเนินโครงการฟื้นฟูหญ้าทะเลแบบบูรณาการทุกภาคส่วน ตั้งแต่ปี พ.ศ. 2561 ถึง 2564 บริเวณอ่าวพังงา จังหวัดพังงา เป็นพื้นที่ 24 ไร่ต่อปี โดยได้ย้ายปลูกต้นพันธุ์หญ้าคาทะเล (Enhalus acoroides (Linnaeus f.) Royle, 1839) รวม 153,600 ต้น อย่างไรก็ตาม การติดตามประเมินอัตรารอดหลังจากการย้ายปลูกด้วยวิธีเก่า ใช้ทรัพยากรบุคคลมาก สิ้นเปลืองเวลา และไม่อาจประเมินผลได้ครอบคลุมทั่วพื้นที่ การศึกษานี้จึงได้นำภาพถ่ายความละเอียดสูง ที่บันทึกด้วยอากาศยานไร้คนขับ มาประมวลผลบนแพลตฟอร์ม Google earth engine โดยมีวัตถุประสงค์เพื่อพัฒนาแนวทางการประเมินอัตรารอดของหญ้าคาทะเลที่ได้รับฟื้นฟูที่รวดเร็วและครอบคลุมทั่วทั้งพื้นที่ศึกษา ผลการศึกษาพบว่าหญ้าทะเล ที่ได้รับการฟื้นฟูด้วยการย้ายปลูกตั้งแต่ปี พ.ศ. 2561 -2564 มีอัตรารอดเฉลี่ยร้อยละ 31.62±4.52 โดยที่ผลการวิเคราะห์มีความแม่นยำและความครบถ้วนในการตรวจจับกอหญ้าทะเล ร้อยละ 0.85±0.05 ภายใต้ข้อจำกัดบางประการ เช่น ระดับน้ำทะเล และความหนาแน่นของพันธุ์หญ้าที่ย้ายปลูกซึ่งส่งผลโดยตรงต่อประสิทธิภาพในการตรวจนับจำนวนกอหญ้าทะเล ผลผลิตที่ได้จากการศึกษาในครั้งนี้จะสามารถนำไปใช้ประกอบการประเมินผลสัมฤทธิ์ของโครงการต่อไป  Department of Marine and Coastal Resources (DMCR) together with local communities around Phangnga bay have restored 0.1536 square kilometer of Enhalus acoroides (Linnaeus f.) Royle, 1839. Total of 153,600 shoots and sprout has been transplanted to the site since 2018 to 2021. The survival rate of the seagrass was assessed by in-situ visual investigation which was time-consuming, labor-intensive and cover only small portion of the restoration area. This paper presents a faster and better area coverage assessment procedure using Unmanned Aerial Vehicle (UAV) imagery analyzed on Google Earth Engine platform. The result of survival rate assessed by this method is 31.62 ±4.52 percent on average with mean accuracy detection (0.85 ±0.05) under specific condition such as sea level and seagrass density which negatively affect the detection efficiency. The proposed model output can be implemented to assess the accomplishment of DMCR seagrass restoration project.

References

Barillé, L., Robin M. Harin, N., Bargain, A. & Launeau, P. (2010). Increase in seagrass distribution at Bourgneuf Bay (France) detected by spatial remote sensing. Aquatic Botany, 92, 185-194.

Chayhard, S., Manthachitra, V., Nualchawee, K., & Buranapratheprat, A. (2018). Multi-temporal mapping of seagrass distribution by using integrated remote sensing data in Kung Kraben Bay (KKB), Chanthaburi Province, Thailand. International Journal of Agricultural Technology, 14, 161-170.

Department of Marine and Coastal Resources. (2017). State of marine and coastal resources and coastal erosion Thailand national report 2017. Bangkok: Strategy and planning division. (in Thai)

Elgammal, M., Ali, R., & Samra, R. (2014). NDVI Threshold Classification for Detecting Vegetation Cover in Damietta Governorate. Journal of American Science, 10(8), 108-113.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment.

Marine and Coastal Resources Research & Development Institute. (2020a). Thailand seagrass map 2020. Bangkok: BORN TO BE PUBLISHING CO., LTD. (in Thai)

Marine and Coastal Resources Research & Development Institute. (2020b). Report on “Joint operation seagrass restoration project” fiscal year 2020. Bangkok: A.P. PRINTING MEDIA CO., LTD. (in Thai)

Nordlund, L. M., Koch, E. W., Barbier, E. B. & Creed, J. C. (2016). Seagrass ecosystem services and their variability across genera and geographical regions. PLoS ONE, 11(10), e0163091.

Özyavuz M., (2010). Analysis of changes in vegetation using multitemporal satellite imagery, the case of Tekirdag Coastal Town. Journal of Coastal Research, 26, 1038-1046.

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J. M., Tucker, J. C. & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in ecology & evolution, 20(9), 503-510.

Rosenfeld, A. & Pflatz, J. L. (1996). Sequential operator in digital pictures processing. Journal of ACM, 13(4), 471-494.

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T. & Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci U S A, 106, 12377-12381.

Wickramarathna, S., Van Den Hoek, J. & Strimbu, B. M. (2021). Automated detection of individual juniper tree location and forest cover changes using Google Earth Engine. Annals of Forest Research, 64, 61-72.

Zhan, Q., Molenaar, M., Tempfli, K. & Shi, W. (2005). Quality assessment for geo-spatial objects derived from remotely sensed data. Int J Remote Sens, 26(14), 2953-2974.

Zhang, W., Wan, P., Wang, T., Cai, S., Chen, Y., Jin, X. & Yan, G. (2019). A Novel approach for the detection of standing tree stems from plot-level terrestrial laser scanning data. Remote Sens, 11(2), 211.

Downloads

Published

2023-12-14