การคัดแยกไลติกเฟจและการศึกษาประสิทธิภาพในการยับยั้งการสร้างไบโอฟิล์มของ Pseudomonas aeruginosa TISTR1287

Isolation and Anti-biofilm Activity of Lytic Phages against Pseudomonas aeruginosa TISTR1287

Authors

  • นันทนิจ จารุเศรณีย์
  • ศรีนวณ นิยม
  • สมบูรณ์ คำเตจา

Keywords:

ซูโดโมแนส, แอรูจิโนซา, ไบโอฟิล์ม, ปฏิชีวนะ, ไลติกเฟจ, antibiotic, biofilm, lytic phage, Pseudomonas aeruginosa

Abstract

ไลติกเฟจสามารถเป็นทางเลือกในการยับยั้งไบโอฟิล์มของ Pseudomonas aeruginosa ไบโอฟิล์มเป็นสารพอลิเมอร์ นอกเซลล์ของแบคทีเรียที่มีบทบาทสำคัญต่อการดื้อยาปฏิชีวนะของแบคทีเรีย งานวิจัยนี้มีวัตถุประสงค์เพื่อแยกไลติกเฟจจากตัวอย่างน้ำและดินที่เก็บจากมหาวิทยาลัยแม่ฟ้าหลวง และเพื่อศึกษาประสิทธิภาพในการยับยั้งการสร้างไบโอฟิล์มของ P. aeruginosa TISTR1287 จากการคัดแยกไลติกเฟจด้วยวิธีเพิ่มปริมาณ และแยกไลติกเฟจบริสุทธิ์สามารถแยกไลติกเฟจ จำนวน 4 ไอโซเลต คือ PAMFUP1, PAMFUP2, PAMFUP3 และ PAMFUP4 การทดสอบความจำเพาะเจาะจงต่อโฮสต์ต่อ P. aeruginosa จำนวนสี่สายพันธุ์พบว่า เฟจทั้งสี่ไอโซเลตมีความจำเพาะเจาะจงต่อ P. aeruginosa TISTR1287 โดยเส้นผ่านศูนย์กลางของวงใสที่ได้จากเฟจไอโซเลต PAMFUP1, PAMFUP2, PAMFUP3 และ PAMFUP4 คือ 0.80±0.15 มม., 0.77±0.18 มม., 0.98±0.13 มม. และ 3.90±0.44 มม. ตามลำดับ และจากการทดสอบประสิทธิภาพการยับยั้งไบโอฟิล์มของเฟจ พบว่า เมื่อบ่มเฟจร่วมกับ P. aeruginosa TISTR1287 เป็นเวลา 8 ชั่วโมงและ 24 ชั่วโมง ปริมาณไบโอฟิล์มลดลง อย่างมีนัยสำคัญทางสถิติ (p<0.00)  Lytic phages act as an alternative inhibitor against Pseudomonas aeruginosa biofilms. A biofilm, a matrix composed of bacterial extracellular polymeric substances, is vital in exacerbating the spread of antibiotic resistance. This research aimed to isolate lytic phages from water and soil samples collected from Mae Fah Luang University premises and investigate their anti-biofilm activity against P. aeruginosa TISTR1287. Phages were isolated using an enrichment protocol and a double overlay agar plaque assay. Four lytic phage isolates were identified and named PAMFUP1, PAMFUP2, PAMFUP3, and PAMFUP4. Spot tests revealed that all four phages are specific for P. aeruginosa TISTR1287. The plaque diameters reached by phage isolates PAMFUP1, PAMFUP2, PAMFUP3, and PAMFUP4 were 0.80±0.15 mm, 0.77±0.18 mm, 0.98±0.13 mm, and 3.90±0.44 mm, respectively. Finally, crystal violet assays were performed to determine biofilm inhibition by four phages. The results demonstrated that these four phages significantly reduced the biofilm formation at 8 hrs and 24 hrs post incubation (p<0.00).

References

Adnan, M., Ali Shah, M. R., Jamal, M., Jalil, F., Andleeb, S., Nawaz, M. A., Pervez, S., Hussain, T., Shah, I., Imran, M., & Kamil, A. (2020). Isolation and characterization of bacteriophage to control multidrug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. Biologicals, (63), 89–96.doi: 10.1016/j.biologicals.2019.10.003.

Bessa, J. L., Fazii, P., Di Giulio, M., & Cellini L. (2013). Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: some remarks about wound infection. International wound journal, 12(1), 47-52. doi: 10.1111/iwj.12049.

Bjarnsholt, T., Ciofu, O., Molin, S. Givskov, M., & Høiby, N. (2013). Applying insights from biofilm biology to drug development - can a new approach be developed?. Nature Reviews Drug Discovery, 12(10), 791–808. doi: 10.1038/nrd4000.

Casto, A., Hurwitz, A., Kou, K., Casto, A., Hurwitz, A., Kou, K., Mansour, G., Mayzel, A., Policke, R., Schmidt, A., Shartel, R., Smith, O., Snyder, A., & Woolf, A. (2016). Bacteriophages: The answer to antibiotic resistance? James Madison Undergraduate Research Journal, 3(1), 36-41.

Chegini, Z., Khoshbayan, A., Moghadam, M. T., Farahani, I., Jazireian, P., & Shariati, A. (2020). Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Annals of Clinical Microbiology and Antimicrobials, 19(45), 1-17. doi: 10.1186/s12941-020-00389-5.

Cisek, A. A., Dąbrowska, I., Gregorczyk, K. P., & Wyżewski, Z. (2017). Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Current Microbiology, 74(2), 277–283. doi: 10.1007/s00284-016-1166-x.

Dong, Z., Xing, S., Liu, J., Tang, X., Ruan, L., Sun, M., Tong, Y., & Peng, D. (2018). Isolation and characterization of a novel phage Xoo-sp2 that infects Xanthomonas oryzae pv. oryzae. Journal of General Virology 99(10), 1453–1462. doi: 10.1099/jgv.0.001133.

Guo, Y., Chen, P., Lin, Z., & Wang, T. (2019). Characterization of two Pseudomonas aeruginosa viruses vB_PaeM SCUT-S1 and vB_PaeM_SCUT-S2. Viruses 11(4), 1-19. doi: 10.3390/v11040318.

Lin, D. M., Koskella, B., & Lin, H. C. (2017). Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics, 8(3), 162–173. doi: 10.4292/wjgpt.v8.i3.162.

Liu, J., Gao, S., Dong, Y., Lu, C., & Liu, Y. (2020). Isolation and characterization of bacteriophages against virulent Aeromonas hydrophila. BMC Microbiology, 20(141), 1-13. doi: 10.1186/s12866-020-01811-w.

Nobel, F. A., Islam, S., Babu, G., AKter, S., Jebin, R. A., Sarker, T. C., Islam, A., & Islam, M. J. (2022). Isolation of multidrug resistance bacteria from the patients with wound infection and their antibiotics susceptibility patterns: A cross-sectional study. Annals of Medicine and Surgerery, 84 (104894), 1-6. doi: 10.1016/j.amsu.2022.104895.

Olszak, T., Zarnowiec, P., Kaca, W., Danis-Wlodarczyk, K., Augustyniak, D., Drevinek, P., de Soyza, A., McClean, S., & Drulis-Kawa, Z. (2015). In vitro and in vivo antibacterial activity of environmental bacteriophages against Pseudomonas aeruginosa strains from cystic fibrosis patients. Applied Microbiology and Biotechnology, 99(14), 6021-33. doi: 10.1007/s00253-015-6492-6.

Padpai, N., Pumkachorn, P., & Rattanachaikulsopon. (2017). Isolation and characterization of lytic phages against antibiotic-resistant Escherichia coli. Journal of Science and Technology Ubon Ratchathani University. Special issue: 62-71. (in Thai)

Phee, A., Bondy-Denomy, J., Kishen, A., Basrani, B., Azarpazhooh, A., & Maxwell, K. (2013). Efficacy of bacteriophage treatment on Pseudomonas aeruginosa biofilms. Journal of Endodontics, 39(3), 364–369. doi: 10.1186/s12941-020-00389-5.

Phumkhachorn, P. & Rattanachaikunsopon, P. (2019). Bacteriophages: biology and applications. Journal of Science & technology, Ubon Ratchathani University, 21(3), 1-13. (in Thai)

Pires, D., Sillankorva, S. Faustino, A., & Azeredo, J. (2011). Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Research in Microbiology, 162, 798-806. doi: 10.1016/j.resmic.2011.06.010.

Ricker, E. B., Aljaafari, H. A. S., Bader, T. M., Hundley, B. S., & Nuxoll, E. (2018). Thermal shock susceptibility and regrowth of Pseudomonas aeruginosa biofilms. International Journal of Hyperthermia, 34(2), 168–176. doi: 10.1080/02656736.2017.1347964.

Rattanachak, N., Weawsiangsang, S., Daowtak, K., Thongsri, Y., Ross, S., Ross, G., Nilsri, N., Baldock, R. A., Pongcharoen, S., Jongjitvimol, T., & Jongjitwimol, J. (2022). High-throughput transcriptomic profiling reveals the inhibitory effect of Hydroquinine on virulence vactors in Pseudomonas aeruginosa. Antibiotics, 11 (1436), 1-16. doi: 10.3390/antibiotics11101436.

Sharma, S., Datta, S., Chatterjee, S., Dutta, M. Samanta, J. Vairale, M. G. Gupta, R., Veer, V., & Dwivedi, S. K. (2021). Isolation and characterization of a lytic bacteriophage against Pseudomonas aeruginosa. Scientific Reports, 11(1),1–22. doi: 10.1038/s41598-021-98457-z.

Shors, T. (2013). Understanding viruses. (2nd Edition). Burlington, MA: Jones & Bartlett Learning.

Yuan, Y., Qu, K., Tan, D., Li, X., Wang, L., Cong, C., Xiu, Z., & Xu, Y. (2019). Isolation and characterization of a bacteriophage and its potential to disrupt multi-drug resistant Pseudomonas aeruginosa biofilms. Microbial Pathogenesis, 128, 329–336. doi: 10.1016/j.micpath.2019.01.032.

Downloads

Published

2023-12-14