ความสามารถในการต้านอนุมูลอิสระ และฤทธิ์ยับยั้งเอนไซม์แอลฟา-กลูโคซิเดส ของสารสกัดน้ำจากต้นเฉาก๊วย

Antioxidant Activity and α-Glucosidase Inhibitory Activity of Mesona chinensis Aqueous Extract

Authors

  • อรสา สุริยาพันธ์
  • กันต์กนิษฐ์ ตั้งสถิตย์กุลชัย
  • ศวิตา จิวจินดา
  • ปัทมพรรณ โลมะรัตน์
  • วิลาสินี หิรัญพานิช ซาโตะ

Keywords:

สารสกัดน้ำจากต้นเฉาก๊วย, ความสามารถในการต้านอนุมูลอิสระ, ฤทธิ์ยับยั้งเอนไซม์แอลฟา-กลูโคซิเดส, การยับยั้งแบบไม่แข่งขัน, Mesona chinensisaqueous extract, Antioxidant activity, alpha-glucosidase inhibitory activity, noncompetitive manner

Abstract

ในประเทศไทยใช้ต้นเฉาก๊วย (Mesona chinensis) แห้งเป็นวัตถุดิบหลักในการผลิตวุ้นเฉาก๊วย ได้มีรายงานว่าสารสกัดน้ำจากต้นเฉาก๊วย (Mesona chinensisaqueous extract, MCAE) มีสารที่มีฤทธิ์ต้านภาวะน้ำตาลในเลือดสูงที่ดีความเข้าใจที่ดีขึ้นเกี่ยวกับการผลิตและฤทธิ์ทางชีวภาพของสารสกัดน้ำจากต้นเฉาก๊วยย่อมมีส่วนช่วยในการพัฒนาส่วนผสมฟังก์ชันและเครื่องดื่มฟังก์ชันชนิดใหม่ ดังนั้นในงานวิจัยนี้ได้ศึกษาอิทธิพลของแหล่งปลูกของต้นเฉาก๊วยต่อปริมาณสารออกฤทธิ์ทางชีวภาพ ความสามารถในการต้านอนุมูลอิสระและฤทธิ์ลดระดับน้ำตาลของสารสกัดน้ำจากต้นเฉาก๊วยจำนวน 4 ตัวอย่างที่เตรียมจากต้นเฉาก๊วยแห้งนำเข้าจากประเทศจีน (2 ตัวอย่าง) ประเทศเวียดนาม และประเทศอินโดนีเซีย การวิเคราะห์ข้อมูลทางสถิติพบว่า แหล่งปลูกของต้นเฉาก๊วยแห้งมีผลต่อปริมาณสารฟีนอลิกทั้งหมด ปริมาณสารฟลาโวนอยด์ทั้งหมด ฤทธิ์ต้านอนุมูลอิสระดีพีพีเอช และฤทธิ์ยับยั้งเอนไซม์แอลฟา-กลูโคซิเดสของสารสกัดน้ำจากต้นเฉาก๊วยอย่างมีนัยสำคัญทางสถิติ (p<0.05) สารสกัดน้ำจากต้นเฉาก๊วยมีปริมาณสารฟีนอลิกทั้งหมดในปริมาณค่อนข้างสูง (68.63-133.27 mg GAE/g) แต่มีปริมาณสารฟลาโวนอยด์ทั้งหมดในปริมาณที่ต่ำมาก (3.49-5.83 mg QE/g) สารสกัดน้ำจากต้นเฉาก๊วยมีฤทธิ์ต้านอนุมูลอิสระดีพีพีเอชที่ดี (IC50 = 17.54-37.98 µg/mL) และมีฤทธิ์ยับยั้งเอนไซม์แอลฟา-กลูโคซิเดสที่ดีมาก (IC50 = 4.77-26.86 µg/mL) การศึกษาจลนพลศาสตร์ของการยับยั้งการทำงานเอนไซม์แอลฟา-กลูโคซิเดสของสารสกัด พบว่าฤทธิ์การยับยั้งแปรผันตามความเข้มข้นของสารสกัดน้ำจากต้นเฉาก๊วย การสร้างกราฟไลน์วีเวอร์-เบิร์กแสดงให้เห็นว่าการยับยั้งการทำงานเอนไซม์ของสารสกัดน้ำจากต้นเฉาก๊วยเป็นการยับยั้งแบบไม่แข่งขันที่มีค่าคงที่ของการยับยั้ง (Ki) เท่ากับ 2.67 µg /mL.  Mesona chinensis is raw material for the production of a black grass jelly in Thailand. Mesona chinensis aqueous extract (MCAE) has been reported as a promising anti-hyperglycemia agent. The better understanding of MCAE on its production and biological activities would facilitate the development of a new functional ingredient and beverage. Thus, the effects of botanical source on bioactive compounds, antioxidant activity and hypoglycemic activity of MCAE were investigated. In this present study, we prepared four MCAEs from M. chinensis plants imported from China (2 sources), Vietnam, and Indonesia. Based on data analysis, botanical source of M. chinensis significantly governed total phenolic content, total flavonoids content, DPPH radical scavenging activity and α-glucosidase inhibition activity of MCAE (p<0.05). The results showed that MCAEs possessed considerable amount of total phenolics (68.63-133.27 mg GAE/g) and trace amount of total flavonoids (3.49-5.83 mg QE/g). MCAEs exhibited potent antioxidant (IC50 = 17.54-37.98 mg/mL) and efficient inhibitor against alpha-glucosidase (IC50 = 4.77-26.86 µg/mL). The enzyme kinetics data revealed that MCAE inhibited a-glucosidase activity in a concentration-dependent manner. Moreover, the Lineweaver-Burk plot elucidated that the inhibition type of a-glucosidase activity by MCAE was a noncompetitive manner with the inhibitory constant (Ki) of 2.67 µg/mL.  

References

Adisakwattana, S., Thilavech, T., & Chusak, C. (2014). Mesona Chinensis Benth extract prevents AGE formation and protein oxidation against fructose-induced protein glycation in vitro. BMC Complementary and Alternative Medicine, 14 (130), 1-9. https://doi.org/10.1186/1472-6882-14-130.

Binh, T. D. T., Dan, S., & Anna, K. J. (2016). Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. Journal of Ethnopharmacology, 186, 189–195. doi: 10.1016/j.jep.2016.03.060.

Blanco, A., & Blanco, G. (2017). Chapter 8 – Enzymes. In A. Blanco, & G. Blanco. (Eds.) Medical Biochemistry. (pp.153-175). Academic Press. https://doi.org/10.1016/B978-0-12-803550-4.00008-2.

Chewchinda, S., Suriyaphan, O., Kanchanadumkerng, P., Sato, H., & Sato, V.H. (2021). Comparison of antioxidant and α-glucosidase inhibitory activities in different cultivars of five mango (Mangifera Indica L.) leaf extracts. Chiang Mai University Journal of Natural Sciences, 20(1), e2021014. doi:10.12982/CMUJNS.2021.014.

Chusak, C., Thilavech, T., & Adisakwattana, S. (2014). Consumption of Mesona chinensis attenuates postprandial glucose and improves antioxidant status induced by a high carbohydrate meal in overweight subjects. The American Journal of Chinese Medicine, 42(2), 315–336. doi: 10.1142/S0192415X14500219.

Dhameja, M., & Gupta, P. (2019). Synthetic heterocyclic candidates as promising -glucosidase inhibitors: An overview. European Journal of Medicinal Chemistry, 176, 343-377. https://doi.org/10.1016/j.ejmech.2019 .04. 025.

He, Z-X., Zhou, Z-W., Yang, Y., Yang, T., Pan, S-Y., Qiu, J-X., & Zhou, S-F. (2015). Overview of clinically approved oral antidiabetic agents for the treatment of type 2 diabetes mellitus. Clinical and Experimental Pharmacology and Physiology, 42(2), 125-138. doi: 10.1111/1440-1681.12332.

Hung, C-Y., & Yen, G-C. (2002). Antioxidant activity of phenolic compounds isolated from Mesona procumbens Hemsl. Journal of Agricultural and Food Chemistry, 50(10), 2993-2997. https://doi.org/10.1021/jf011454y.

Huang, G-J., Liao, J-C., Chiu, C-S., Huang, S-S., Lin, T-H., & Deng, J-S. (2011). Anti-inflammatory activities of aqueous extract of Mesona procumbens in experimental mice. Journal of the Science of Food and Agriculture, 92(6), 1186-1193. doi: 10.1002/jsfa.4682.

Huang, H-C., Chuang, S-H., Wu, Y-C., & Chao, P-M. (2016). Hypolipidaemic function of Hsian-tsao tea (Mesona procumbens Hemsl.): Working mechanisms and active components. Journal of Functional Foods, 26, 217-227. https://doi.org/10.1016/j.jff.2016.07.019

Jeng, T. L., Lai, C. C., Kao, J. U., Wu, M. T., & Sung, J. M. (2013). Particle size and temperature effects on antioxidant by-product isolated from leaf gum extract of Mesona procumbens Hemsl. Journal of Food Processing and Preservation, 37(1).10-15. https://doi.org/10.1111/j.1745-4549.2011.00608.x

Kim, Y-M., Jeong, Y-K., Wang, M-H., Lee, W-Y., & Rhee, H-I. (2005). Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition, 21(6), 756-761. doi: 10.1016/j.nut.2004.10.014.

Lim, J., Adisakwattana, S., & Henry, C. J. (2018). Effects of grass jelly on glycemic control: hydrocolloids may inhibit gut carbohydrase. Asia Pacific Journal of Clinical Nutrition, 27(2), 336-340. doi: 10.6133/apjcn.042017.16.

Manoka, S., Sungthong, B., Sato, H., Sugiyama, E., & Sato, V. H. (2016). Hypoglycemic and antioxidant activities of the water extract of Aquilaria crassna leaves in streptozotocin-nicotinamide-induced type-2 diabetic mice. Natural Product Communications, 11(6), 757-761.

Sasmita, A. O., & Ling, A. P. K. (2017). Bioactivity of Mesona palustris (Black Cincau) as a nutraceutical agent. Journal of Engineering and Science Research, 1(2), 47-53. doi: 10.26666/rmp.jesr.2017.2.9.

Seetaloo, A. D., Aumeeruddy, M. Z., Kannan, R. R. R., & Mahomoodally, M. F. (2019). Potential of traditionally consumed medicinal herbs, spices, and food plants to inhibit key digestive enzymes geared towards diabetes mellitus management: A systematic review. South African Journal of Botany, 120, 3-24. https://doi.org/10.1016/j.sajb.2018.05.015.

Sithisarn, P., Rojsanga, P., Sithisarn, P., & Kongkiatpaiboon, S. (2015). Antioxidant activity and antibacterial effects on clinical isolated Streptococcus suis and Staphylococcus intermedius of extracts from several parts of Cladogynos orientalis and their phytochemical screenings. Evidence-based Complementary and Alternative Medicine. 2015, Article ID 908242.doi: 10.1155/2015/908242.

Stefano, E. D., Oliviero, T., & Udenigwen, C. C. (2018). Functional significance and structure–activity relationship of food-derived α-glucosidase inhibitors. Current Opinion in Food Science, 20, 7-12. https://doi.org/ 10.1016 /j.cofs.2018.02.008.

Supasuteekul, C., Nonthitipong, W., Tadtong, S., Likhitwitayawuid, K., Tengamnuay, P., & Sritularak, B. (2016). Antioxidant, DNA damage protective, neuroprotective, and α-glucosidase inhibitory activities of a flavonoid glycoside from leaves of Garcinia gracilis. Revista Brasileira de Farmacognosia, 26(3), 312-320. https://doi.org/ 10.1016/j.bjp.2016.01.007.

Tao, F., Biao, G.Z., Yu. J. Z., & Ning, Z. H. (2008). Isolation and characterization of an acidic polysaccharide from Mesona Blumes gum. Carbohydrate Polymers, 71(2), 159-169. https://doi.org/10.1016/j.carbpol.2007.05.017.

Vongsak, B., Sithisarn, P., Mangmool, S., Thongpraditchote, S., Wongkrajang, Y., & Gritsanapan, W. (2013). Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Industrial Crops and Products, 44, 566-571. https://doi.org/10.1016/j.indcrop.2012.09.021

Yang, M., Xu, Z-P., Xu, C-J., Meng, J., Ding, G-Q., Zhang, X-M., & Weng, Y. (2008). Renal protective activity of Hsian-tsao extracts in diabetic rats. Biomedical and Environmental Sciences, 21(3), 222-22

Yeh, C. T., Huang, W. H., & Yen, G. C. (2009). Antihypertensive effects of Hsian-tsao and its active compound in spontaneously hypertensive rats. The Journal of Nutritional Biochemistry, 20(11), 866–875.

Yen, G. C., & Hung, C. A. (2000). Effects of alkaline and heat treatment on antioxidative activity and total phenolics of extracts from Hsian-tsao (Mesona procumbens Hemsl.). Food Research International, 33(6), 487-492.

Yen, G-C., Duh, P-D., & Hung, Y-L. (2001). Contributions of major components to the antimutagenic effect of Hsian-tsao (Mesona procumbens Hemsl.). Journal of Agricultural and Food Chemistry, 49(10), 5000-5004.

Yen, G-C., Hung, C-Y., & Chen, Y-J. (2003). Antioxidant properties of Hsian-tsao (Mesona procumbens Hemsl.). In Oriental Foods and Herbs. (pp. 202-214). ACS Symposium Series. 859: American Chemistry Society.

Yin, Z., Zhang, W., Feng, F., Zhang, Y., & Kang, W. (2014). α-Glucosidase inhibitors isolated from medicinal plants. Food Science and Human Wellness, 3(3-4), 136-174. https://doi.org/10.1016/j.fshw.2014.11.003.

Zhang, H., Wang, G., Beta, T., & Dong, J. (2015). Inhibitory properties of aqueous ethanol extracts of propolis on alpha-glucosidase. Evidence-based Complementary and Alternative Medicine, 2015, Article ID 587383. https://doi.org/10.1155/2015/587383

Downloads

Published

2023-12-14