อิทธิพลของอุณหภูมิต่อเลเซอร์ไดโอดในเลเซอร์ไดโอดแบบโพรงภายนอก

Influence of Temperature on Laser Diode Inside External Cavity Diode Laser

Authors

  • ณัฐวุฒิ สุขสวัสดิ์
  • สิทธิ บัวทอง
  • สรายุธ เดชะปัญญา

Keywords:

เลเซอร์ไดโอดแบบโพรงภายนอก, กระจกสะท้อนตาแมว, สเปกโตรสโคปีแบบดูดกลืนอิ่มตัวของอะตอมรูบิเดียม, external cavity diode laser, cateye reflector, rubidium saturated absorption spectroscopy

Abstract

งานวิจัยนี้ศึกษาอิทธิพลของอุณหภูมิที่มีต่อเลเซอร์ไดโอดภายในระบบเลเซอร์ไดโอดแบบโพรงภายนอกชนิดกระจก สะท้อนตาแมว เลเซอร์ไดโอดแบบโพรงภายนอกชนิดนี้ใช้การโฟกัสแสงไปที่กระจกเพื่อที่จะทำการปรับความถี่ของเลเซอร์ กระแสไฟฟ้าที่ให้กับเลเซอร์ไดโอด และอุณหภูมิของเลเซอร์ไดโอดแบบโพรงภายนอกนี้ สามารถปรับเพื่อให้ได้ค่าความถี่ของเลเซอร์ ที่เหมาะสมสำหรับ D2 ของอะตอมรูบิเดียม อย่างไรก็ตามอุณหภูมิของเลเซอร์มีอิทธิพลอย่างมากต่อเลเซอร์ ดังนั้นในงานวิจัยนี้ได้ศึกษาการเปลี่ยนแปลงอุณหภูมิของเลเซอร์โดยที่ระยะคาวิตี้คงที่ตลอดการทดลอง ซึ่งความยาวคลื่นของเลเซอร์ถูกวัดด้วยสเปกโตรมิเตอร์ โดยการทดลองในตอนที่สองจะทำการปรับอุณหภูมิ และกระแสที่ค่าต่างๆ โดยใช้ชุดทดลองสเปกโตรสโคปี แบบดูดกลืน อิ่มตัวของอะตอมรูบิเดียมเพื่อวัดการเปลี่ยนชั้นพลังงานแบบละเอียดยิ่งยวดที่ D2 สำหรับการปรับเงื่อนไขที่ดีที่สุดที่สามารถวัดการดูดกลืนที่ D2 สำหรับใช้ในการทดลองต่างๆ กับอะตอมรูบิเดียมได้  We study the influence of temperature on laser diode inside an external cavity diode laser (ECDL) with a cateye reflector mirror type. This type of ECDL has a focus beam to the external mirror in order to tune the laser frequency. The input current and temperature of the ECDL can be adjusted to a proper frequency for D2 of rubidium atoms. However, the influence of the temperature has a strong effect on the laser. Therefore, the study of the temperature variation has been conducted. The cavity length of the ECDL was fixed during the experiments. The laser wavelength was measured by a spectrometer. The second experiment, the temperature and current of the laser were adjusted and a rubidium saturated absorption spectroscopy was employed to monitor the D2 hyperfine transitions for the optimization conditions which can measure the absorption at D2 for using in various experiments with rubidium atoms.

References

Bayrakli, I. (2018). Tunable double-mode sensor for multi-gas detection based on the external-cavity diode laser. Appl. Opt., 57, 4039-4042.

Chen, Y. H., Lin, W. C., Chen, H. Z., Shy, J. T., & Chui, H. C. (2017). Single-Frequency External Cavity Green Diode Laser. IEEE Photonics J., 9, 1-7.

Cunyun, Y. (2004). Tunable External Cavity Diode Lasers. MA, USA: World Scientific Publishing Co. Pte, Ltd.

Hoppe, M., Jiménez, A., Rohling, H., Schmidtmann, S., Grahmann, J., Tatenguem, H., Milde, T., Schanze, T., & Sacher, J. R. (2019). Construction and Characterization of External Cavity Diode Lasers Based on a Microelectromechanical System Device. IEEE J. Sel. Top. Quantum Electron., 25, 1-9.

Keaveney, J., Hamlyn, W. J., Adams, C. S., & Hughes, I. G. (2016). A single-mode external cavity diode laser using an intra-cavity atomic Faraday filter with short-term linewidth <400 kHz and long-term stability of <1 MHz. Rev. Sci. Instrum., 87, 095111.

Li, B., Gao, J., Yu, A., Luo, S., Xiong, D., Wang, X., & Zuo, D. (2017). 500mW tunable external cavity diode laser with narrow line-width emission in blue-violet region. Opt. Laser Technol., 96, 176-179.

Liang, W., Ilchenko, V. S., Eliyahu, D., Savchenkov, A. A., Matsko, A. B., Seidel, D., & Maleki, L. (2015). Ultralow noise miniature external cavity semiconductor laser. Nat. Commun., 6, 7371.

Lynch, S. G., Holmes, C., Berry, S. A., Gates, J. C., Jantzen, A., Ferreiro, T. I., & Smith, P. G. R. (2016). External cavity diode laser based upon an FBG in an integrated optical fiber platform. Opt. Express, 24, 8391-8398.

Takei, Y., Arai, K., Yoshida, H., Bitou, Y., Telada, S., & Kobata, T. (2020). Development of an optical pressure measurement system using an external cavity diode laser with a wide tunable frequency range. Measurement, 151, 107090.

Temnuch, W., Buathong, S., Phearivan, P., & Deachapunya, S. (2021). Low-cost external cavity diode laser for cold atom experiments. J. Phys. Conf. Ser., 1719, 012021.

Thompson, D. J., & Scholten, R. E. (2012). Narrow linewidth tunable external cavity diode laser using wide bandwidth filter. Rev. Sci. Instrum., 83, 023107.

Wells, S. R., Miyabe, M. & Hasegawa, S. (2020). Design, construction and characterization of a single unit external cavity diode laser coupled tapered amplifier system for atomic physics. Opt. Laser Technol, 126, 106118.

Downloads

Published

2023-12-14