ผลของวิตามินซีในสารสกัดมะขามป้อมต่อการเจริญเติบโต ค่าชีวเคมีของเลือด บางประการ ระบบภูมิคุ้มกันแบบไม่จำเพาะ และการต้านทานเชื้อแบคทีเรียก่อโรค Streptococcus agalactiae ในปลานิล (Oreochromis niloticus)
Effects of Vitamin C in Indian Gooseberry (Phyllanthus emblica) Extract on Growth Performance, Blood Biochemical, Non-Specific Immune Responses and Bacterial Resistance, Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus)
Keywords:
ปลานิล, สารสกัดมะขามป้อม, การเจริญเติบโต, ระบบภูมิคุ้มกัน, ความต้านทานเชื้อแบคทีเรีย , nile tilapia, Indian gooseberry extract, growth performance, immune response, bacterial resistanceAbstract
วัตถุประสงค์และที่มา : การวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของวิตามินซีในสารสกัดมะขามป้อม (Phyllanthus emblica) ในอาหารต่อการเจริญเติบโต ค่าชีวเคมีของเลือดบางประการ ระบบภูมิคุ้มกันแบบไม่จำเพาะ และการต้านทานเชื้อแบคทีเรียก่อโรค Streptococcus agalactiae ในปลานิล วิธีดำเนินการวิจัย : วางแผนการทดลองแบบสุ่มตลอด (CRD) แบ่งชุดการทดลองออกเป็น 5 ชุดการทดลอง ได้แก่ ชุดควบคุม (อาหารเม็ดสำเร็จรูปที่ไม่เสริมวิตามินซี), T1-T3 อาหารเม็ดสำเร็จรูปที่เสริมวิตามินซีจากสารสกัดมะขามป้อม (natural ascorbic acid) อัตรา 3, 6 และ 10 เปอร์เซ็นต์ และ T4 อาหารเม็ดสำเร็จรูปที่เสริมวิตามินซีสังเคราะห์ 3 กรัม/อาหาร 1 กิโลกรัม เป็นระยะเวลา 60 วัน ผลการวิจัย : ปลาทดลองในกลุ่มที่เลี้ยงด้วยอาหารผสมสารสกัดจากมะขามป้อม 3 เปอร์เซ็นต์ มีค่าน้ำหนักเฉลี่ยสุดท้าย น้ำหนักที่เพิ่มขึ้น และอัตราการเจริญเติบโตต่อวัน และค่าอัตราแลกเนื้อ มีค่าดีที่สุด แต่ไม่มีความแตกต่างกับชุดทดลองที่ได้รับอาหารผสมสารสกัดมะขามป้อม 10 เปอร์เซ็นต์ และวิตามินซีสังเคราะห์ (P > 0.05) และปลานิลกลุ่มทดลองทั้งที่เลี้ยง ด้วยวิตามินซีจากสารสกัดมะขามป้อมทุกชุดการทดลอง และวิตามินซีสังเคราะห์ มีอัตราการเจริญเติบโต ระบบภูมิคุ้มกัน แบบไม่จำเพาะ ได้แก่ ค่ากิจกรรมการจับกินสิ่งแปลกปลอมของเซลล์เม็ดเลือดขาว (Phagocytic activity) ค่ากิจกรรมไลโซไซม์ของซีรัม (Lysozyme activity) และความสามารถในการต้านทานต่อเชื้อแบคทีเรียก่อโรค S. agalactiae ดีกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทางสถิติ (P < 0.05) สรุปผลการวิจัย : ผลจากศึกษานี้จะเห็นได้ว่า สามารถใช้สารสกัดจากมะขามป้อม (P. emblica) เสริมในอาหารทดลองเลี้ยงปลานิลเพื่อทดแทนการใช้วิตามินซีสังเคราะห์ได้ Background and Objectives: The aim of this research is to determine the effects of vitamin C in Indian gooseberry (Phyllanthus emblica) extract on growth performance, blood biochemical, non-specific immune response and bacterial resistance against, Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus) Methodology: A completely randomized design (CRD) was used in this experiment, Five groups of Nile tilapia were fed experimental diets containing control group (without vitamin C), T1-T3: supplemented with vitamin C (natural ascorbic acid) from Indian gooseberry extract at 3, 6, and 10%, and T4: supplemented synthetic vitamin C at 3 g/kg for 60 days. Main Results: The experimental fish supplemented with Indian gooseberry extract at 3 % had a final average weight, weight gain, average dairy gain (ADG) and the feed conversion ratio (FCR) were not significantly different compared with Indian gooseberry extract at 10 % and synthetic vitamin C groups (P > 0.05). Nile tilapia in the experimental group were fed with vitamin C (natural ascorbic acid) from Indian gooseberry extract and synthetic vitamin C has a growth rate, non specific immune response; Phagocytic activity and lysozyme activity; and bacterial resistance, S. agalactiae significantly better than control group (P<0.05). Conclusions: The results of this study can be seen that Indian gooseberry (P. emblica) extract can be used as a supplemented in tilapia diets to replace the use of synthetic vitamin C.References
Ai, Q., Mai, K., Xu, W., Zhang, C., Duan, Q., Tan, B., & Liufu, Z. (2004). Effects of dietary vitamin C on growth and immune response of Japanese seabass, Lateolabrax japonicus. Aquaculture, 242, 489-500. doi.org/10.1016/j.aquaculture.2004.08.016
Al-Harbi, A.H. (1994). First isolation of Streptococcus sp. from hybrid tilapia (Oreochromis niloticus x O. aureus) in Saudi Arabia. Aquaculture, 128, 195-201. doi.org/10.1016/0044-8486(94)90308-5
Anbarasu, K., & Chandran, M. R. (2001). Effect of ascorbic acid on the immune response of the catfish, Mystus gulio (Hamilton), to different bacterins of Aeromonas hydrophila. Fish Shellfish Immunol, 11, 347-355. doi.org/10.1006/fsim.2000.0322
Anto, A.V.J., & Balasubramanian, V. (2015). Therapeutic effect of Phyllanthus emblica on disease induced Common Carp (Cyprinus carpio) by Aeromonas hydrophila. International Journal of Zoological Research, 11(3), 96-101. doi: 10.3923/ijzr.2015.96.101
Areechon, N., Kannika, K., Hirono, I., Kondo, H., & Unajak, S. (2016). Draft genome sequences of Streptococcus agalactiae serotype Ia and III isolates from Tilapia farms in Thailand. Genome Announcements, 4(2). doi.org/10.1128/genomea.00122-16
Benard, E. L., Roobol, S. J., Spaink, H. P., & Meijer, A. H. (2014). Phagocytosis of mycobacteria by zebrafish macrophages is dependent on the scavenger receptor Marco, a key control factor of pro-inflammatory signalling. Developmental & Comparative Immunology, 47(2), 223–233. doi.org/10.1016/j.dci.2014.07.022
Christybapita, D., Divyagnaneswari, M., & Michael, R.D. (2007). Oral administration of Eclipta alba leaf aqueous extract enhances the non-specific immune response and disease resistance of Oreochromis niloticus. Fish Shellfish Immunol, 23, 840-852. doi: 10.1016/j.fsi.2007.03.010
Cooper, D. Y., & Rosendalh, O. (1962). Action of noradrenaline and ascorbic acid on C-21 hydroxylation of steroids by adrenocortical microsomes. Archives of Biochemistry. 96, 331-335. doi: 10.1016/0003-9861(62)90416-2
Doan, H. V., Lumsangkul, C., Sringarm, K., Hoseinifar, S. H., Dawood, M. A. O., El-Haroun, E., Harikrishnan,R., Jaturasitha, S., & Paolucci, M. (2022). Impacts of Amla (Phyllanthus emblica) fruit extract on growth, skin mucosal and serum immunities, and disease resistance of Nile tilapia (Oreochromis niloticus) raised under biofloc system. Aquaculture Reports, 22, 100953. doi.org/10.1016/j.aqrep.2021.100953
Dorfman, R. I., Hayono, M., Hechter, O., & Saba, N. (1956). Some aspects of the biogenesis of adrenal steroid hormones. Recent progress in hormone research, 12, 79–123. PMID: 13401052.
Duangwongsa, J., & Ungsethaphand, T. (2021). Effect of plant extracts (Phyllanthus emblica Allium ascalonicum and Sesbania grandiflora) on growth hematology and non-specific immune response of tilapia (Oreochromis niloticus). Khon Kaen Agriculture Journal, 49(1), 192-202. doi:10.14456/kaj.2021.16 (in Thai)
Eo, J., & Lee, K. J. (2008). Effect of dietary ascorbic acid on growth and non-specific immune responses of tiger puffer, Takifugu rubripes. Fish & Shellfish Immunology, 25(5), 611–616. doi.org/10.1016/j.fsi.2008.08.009
Ellis, A. E. (1988). Vaccination against enteric redmouth. In A. E. Ellis (Ed.), Fish Vaccination, (pp. 85-92). London: Academic Press.
Esteban, M. A., Cuesta, A., Chaves-Pozo, E., & Meseguer, J. (2015). Phagocytosis in teleosts: Implications of the new cells involved. Biology (Basel), 4(4), 907–922. doi.org/10.3390/biology4040907
FAO. 2022. The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. Rome, FAO. doi.org/10.4060/cc0461en
Fazio, F., Iaria, C., Saoca, C., Costa, A., Piccione, G., & Spanò, N. (2020). Effect of dietary vitamin C supplementation on the blood parameters of Striped Bass Morone saxatilis (Walbaum, 1752). Turkish Journal of Fisheries and Aquatic Sciences, 20(6). doi.org/10.4194/1303-2712-v20_6_07
Grayfer, L., Hodgkinson, J. W., & Belosevic, M. (2014). Antimicrobial responses of teleost phagocytes and innate immune evasion strategies of intracellular bacteria. Developmental & Comparative Immunology, 43(2), 223–242. doi.org/10.1016/j.dci.2013.08.003
Jantrakajorn, S., Maisak, H., & Wongtavatchai, J. (2014). Comprehensive Investigation of Streptococcosis outbreaks in cultured Nile Tilapia, Oreochromis niloticus, and Red Tilapia, Oreochromis sp., of Thailand. Journal of the World Aquaculture Society, 45(4), 392–402. doi.org/10.1111/jwas.12131
Kayansamruaj, P., Pirarat, N., Kondo, H., Hirono, I., & Rodkhum, C. (2015). Genomic comparison between pathogenic Streptococcus agalactiae isolated from Nile tilapia in Thailand and fish-derived ST7 strains. Infection, Genetics and Evolution, 36, 307–314. doi.org/10.1016/j.meegid.2015.10.009
Kitabchi, A. E. (1967). Ascorbic acid in steroidgenesis. Nature, 215, 1385-1386. doi: 10.1038/2151385a0.
Lin, M. F., & Shiau, S. Y. (2005). Dietary l-ascorbic acid affects growth, nonspecific immune responses and disease resistance in juvenile grouper, Epinephelus malabaricus. Aquaculture, 244(1–4), 215–221. doi.org/10.1016/j.aquaculture.2004.10.026
Magnadottir, B. (2006). Innate immunity of fish (overview). Fish & Shellfish Immunology, 20(2), 137–151. doi.org/10.1016/j.fsi.2004.09.006
Neumann, N. F., Stafford, J. L., Barreda, D., Ainsworth, A. J., & Belosevic, M. (2001). Antimicrobial mechanisms of fish phagocytes and their role in host defense. Developmental & Comparative Immunology, 25(8–9), 807–825. doi.org/10.1016/s0145-305x(01)00037-4
Nilkamhank, S., & Paochom, A. (2000) Isolation of herbal vitamin C. A special project submitted in the bachelor degree of science in Pharmacy. Mahidol university. (in Thai)
Ortuño, J., Esteban, M. A., & Meseguer, J. (1999). Effects of high dietary intake of vitamin C on non-specific immune response of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunology. 9, 429– 443. doi.org/10.1006/fsim.1998.0201
Ortuño, J., Esteban, M. A., Meseguer, J., & Cuesta, A. (2001). Effect of oral administration of high vitamin C and E dosages on the gilthead seabream (Sparus aurata L.) innate immune system. Veterinary Immunology and Immunopathology, 79, 167-180. doi: 10.1016/s0165-2427(01)00264-1.
Ortuño, J., Esteban, M. A., & Meseguer, J. (2003). The effect of dietary intake of vitamins C and E on the stress response of gilthead seabream (Sparus aurata L.). Fish & Shellfish Immunology, 14, 145-156. doi: 10.1006/fsim.2002.0428.
Parry, R. M., Chandau, R. C., & Shahani, R. M. (1965). A rapid and sensitive assay of muramidase. In Proceedings of the Society for Experimental Biology and Medicine, 119, (pp. 384-386). doi:10.3181/00379727-119-30188
Perdikaris, C., Nathanailides, C., Gouva, E., Gabriel, U.U., Bitchava, K., Athanasopoulou, F., Paschou, A., & Paschos, I. (2010). Size-relative effectiveness of clove oil as an anaesthetic for rainbow trout (Oncorhynchus mykiss Walbaum, 1792) and goldfish (Carassius auratus Linnaeus, 1758). Acta Veterinaria Brno, 79, 481-490. doi.org/10.2754/avb201079030481
Peter-Futre, E. M. (2002). Vitamin C and exercise-induced oxidative and inflammatory stress in ultramarathon athletes. Ph. D. Thesis. University of Pretoria.
Phoonsamran, K. (2009). Effects of Vitamin C dietary supplementation on growth, survival and immune response of Maekong Giant Catfish (Pangasianodon gigas, Chevey). Master’s thesis, Maejo University. (in Thai)
Rahimnejad, S., Dabrowski, K., Izquierdo, M., Hematyar, N., Imentai, A., Steinbach, C., & Policar, T. (2021). Effects of vitamin C and E supplementation on growth, fatty acid composition, innate Immunity, and antioxidant capacity of Rainbow Trout (Oncorhynchus mykiss) fed oxidized fish oil. Frontiers in Marine Science, 8. doi.org/10.3389/fmars.2021.760587
Ren, T., Koshio, S., Uyan, O., Komilus, C. F., Yokoyama, S., Ishikawa, M., & Abdul, K. (2008). Effects of dietary Vitamin C on blood chemistry and nonspecific immune response of juvenile red sea bream, Pagrus major. Journal of the World Aquaculture Society, 39(6), 797–803. doi.org/10.1111/j.1749-7345.2008.00216.x
Roberts, M. L., Davies, S. J., & Pulsford, A. L. (1995). The influence of ascorbic acid (vitamin C) on non-specific immunity in the turbot (Scophthalmus maximus L.). Fish Shellfish Immunol, 5, 27-38. doi.org/10.1016/S1050-4648(05)80004-X
Sangkhonkhet N., & Haemasaton, T. (2019). The study juice fermentation for Malacca tree (Phyllanthus emblica Linn.) levels diet on white Shrimp (Litopenaeus vannamei). Proceedings of the 29th Thaksin University National Academic Conference 2019: Research and innovation for sustainability development. (in Thai)
Saurabh, S., & Sahoo, P.K. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research, 39, 223–239. doi.org/10.1111/j.1365- 2109.2007.01883.x
Scartezzini, P., Antognoni, F., Raggi, M.A., Poli, F., & Sabbioni, C. (2006). Vitamin C content and antioxidant activity of the fruit and of the Ayurvedic preparation of Emblica officinalis Gaertn., Journal of Ethnopharmacology, 104(1–2), 113-118. doi.org/10.1016/j.jep.2005.08.065.
Schmekel, B., Blomstrand, P., & Venge, P. (2013). Serum lysozyme - a surrogate marker of pulmonary microvascular injury in smokers? Clinical Physiology Functional Imaging, 33, 307–312. doi.org/10.1111/cpf.12029
Sobhana, K. S., Mohan, C. V., & Shankar, K. M. (2002). Effect of dietary vitamin C on the disease susceptibility and inflammatory response of mrigal, Cirrhinus mrigala (Hamilton) to experimental infection of Aeromonas hydrophila. Aquaculture, 207(3–4), 225–238. doi.org/10.1016/s0044-8486(01)00793-1
Suanyuk, N., Kong, F., Ko, D., Gilbert, G. L., & Supamattaya, K. (2008). Occurrence of rare genotypes of Streptococcus agalactiae in cultured red tilapia Oreochromis sp. and Nile tilapia O. niloticus in Thailand—Relationship to human isolates?. Aquaculture, 284(1–4), 35-40. doi.org/10.1016/j.aquaculture.2008.07.034
Tamta, M., & Saxena, A. (2018). Effect of Amla (Emblica officinalis) on the Hematology and Serum Biochemical Parameters of Rohu Fingerlings in Tarai Conditions of Uttarakhand. International Journal of Current Microbiology and Applied Sciences. doi.org/10.20546/ijcmas.2018.710.251
Wang, X., Kim, K. W., Bai, S. C., Huh, M. D., & Cho, B. Y. (2003). Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciatus). Aquaculture, 215, 203-211. doi.org/10.1016/S0044-8486(02)00042-X
Xavier, J. B., Kim, W., & Foster, K. R. (2011). A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Molecular microbiology, 79, 166–179. doi: 10.1111/j.1365-2958.2010.07436.x
Yoshida, T., & Kitao, T. (1991). The opsonic effect of specific immune serum on the phagocytic and chemiluminescent response in rainbow trout, Oncorhynchus mykiss phagocytes. Fish Pathology, 26, 29–33. doi.org/10.3147/jsfp.26.29