การกำหนดอายุด้วยวิธีลูมิเนสเซนส์ของตะกอนชายฝั่งจังหวัดสงขลา ในปลายยุคควอเทอร์นารี ประเทศไทย
Optically Stimulated Luminescence Dating Revealed the Late Quaternary Coastal Sediments in Songkhla Coast, Thailand
Keywords:
วิวัฒนาการทางธรณีวิทยา, การกำหนดอายุด้วยวิธีลูมิเนสเซนส์, สภาพแวดล้อมบรรพกาล, เทคนิค Single aliquot regenerative dose (SAR), ทะเลสาบสงขลา, geological evolution, OSL dating, paleoenvironment, single aliquot regeneration, Songkhla lagoonAbstract
วัตถุประสงค์และที่มา : ตะกอนชายฝั่งตามแนวชายฝั่งจังหวัดสงขลายังคงขาดข้อมูลลำดับเหตุการณ์ทางธรณีวิทยาที่จำเป็นในการอธิบายวิวัฒนาการของชายฝั่ง ในการศึกษาครั้งนี้จึงมีวัตถุประสงค์เพื่อกำหนดอายุของตะกอนชายฝั่งทางฝั่งทะเลสาบสงขลา เพื่อใช้เป็นการศึกษาเบื้องต้นในการก่อตัวของทะเลสาบสงขลา วิธีดำเนินการวิจัย : ศึกษาพิกัดทางภูมิศาสตร์และและความสูงจากระดับน้ำทะเลเพื่อสร้างแผนที่ภูมิประเทศ โดยระบบเครือข่ายการรังวัดด้วยดาวเทียมแบบจลน์ (The Global Navigation Satellite System with the real-time kinematic, RTK GNSS network) และใช้ท่อพีวีซี (PVC) ทึบแสงในการเก็บตัวอย่างตะกอนจากสันทรายชุดเก่าและที่ราบหลังสันทราย เพื่อนำไปกำหนดอายุของชายฝั่งด้วยวิธีลูมิเนสเซนส์ (Optically-stimulated luminescence, OSL) และเทคนิค Single aliquot regenerative dose (SAR). ผลการวิจัย : จากการศึกษาด้วยระบบรังวัดแบบจลน์และการทำแผนที่ภูมิประเทศพบว่ามีสันทรายชุดเก่าสองชุดและที่ราบหลังสันทราย ซึ่งมีอายุ 10,000, 30,500 และ 39,200 ปี และมีตัวอย่างตะกอนที่อายุเกินกว่าเทคนิคสามารถตรวจวัดได้ สรุปผลการวิจัย : การกำหนดอายุด้วย Quartz OSL ให้ผลสรุปว่าสันทรายชุดในสุดและที่ราบหลังสันทรายมีอายุในช่วง 30,000-40,000 ปีก่อน ซึ่งเป็นช่วงที่มีสภาพอากาศแบบชื้นก่อนที่สภาพอากาศจะแห้งแล้งและหนาวจัดขึ้นในปลายยุคน้ำแข็งครั้งล่าสุด (late glacial maximum) ในขณะที่ที่ราบหลังสันทรายชุดนอกเป็นตะกอนชายฝั่งที่อายุน้อยที่สุดมีอายุราว 10,000 ปีก่อน เกิดขึ้นเมื่อระดับน้ำทะเลสูงขึ้นในช่วงต้นสมัยโฮโลซีน (Holocene) หลังจากนั้นชายฝั่งทะเลสาบสงขลาปรากฏเพียงตะกอนที่ราบน้ำทะเลขึ้นถึงเท่านั้น อย่างไรก็ตามผลของการกำหนดอายุตะกอนพบช่วงเวลาที่ขาดหายไปของลำดับชั้นหินหรือเวลาความไม่ต่อเนื่อง (hiatus) ในปลายยุคน้ำแข็งครั้งล่าสุด Background and Objectives: Coastal sediments along the Songkhla coast still lack chronological data to describe their evolution. The objective of this study was to determine the chronological ages of the lagoonal side of the Songkhla coastline area, with the purpose of conducting a preliminary investigation into the development of the Songkhla lagoon. Methodology: The topographic map of the coastal sediments that were classified early were taken with the real-time kinematic survey by the Global Navigation Satellite System. Samples were taken from the old ridges and plains behind the ridges using a light-blocking (PVC) cylinder tube and dated by optically stimulated luminescence (OSL) with the single aliquot regenerative dose protocol. Main Results: A field survey by GNSS-RTK confirmed the two old ridges and plains parallel to the Songkhla lagoon coast in Hatyai district. The dating results were 10.0, 30.5, 39.2 ka (thousand years), and a saturated equivalent dose sample. Conclusions: Quartz OSL dating revealed that the inner old ridge and plain behind the ridge were deposited during the humid period approximately 30–40 ka before the drought period in the late glacial maximum (LGM). At the same time, the youngest sediment here was the outer plain behind the ridge that was deposited 10 ka ago when the sea level transgressed in the early Holocene. Since then, only tidal flat sediment has been found on the lagoon coast. However, in this area, there was a hiatus during LGM.References
Aitken, M. J. (1985). Thermoluminescence dating. Academic Press Inc.
Anderson, D. E., Goudie, A. S., & Parker, A. G. (2013). Global Environments through the Quaternary: Exploring Environmental Change (2nd ed.). Oxford University Press.
Brill, D. (2012). The tsunami history of southwest Thailand - Recurrence, magnitude and impact of palaeotsunamis inferred from onshore deposits [Doctoral dissertation, University of Cologne]. Cologne, Germany.
Brill, D., Klasen, N., Jankaew, K., Brückner, H., Kelletat, D., Scheffers, A., & Scheffers, S. (2012). Local inundation distances and regional tsunami recurrence in the Indian Ocean inferred from luminescence dating of sandy deposits in Thailand. Nat. Hazards Earth Syst. Sci., 12(7), 2177-2192. doi: /10.5194/nhess-12-2177-2012
Chaimanee, N. (1989). Geological Mapping of the Holocene Deposits in the Coastal Plain of Ban Sanamchai Area, Southern Thailand [Master's thesis, Free University of Brussels]. Belgium.
Chaimanee, N., & Tiyapirach, S. (1983). On the coastal morphology of Songkla province, southern Thailand (N. Thiramongkol & V. Pisutha-Arnond, Eds.). (in Thai)
Chawchai, S., Chabangborn, A., Kylander, M., Löwemark, L., Mörth, C.-M., Blaauw, M., Klubseang, W., Reimer, P., Fritz, S. C., & Wohlfarth, B. (2013). Lake Kumphawapi–an archive of Holocene palaeoenvironmental and palaeoclimatic changes in northeast Thailand. Quaternary Science Reviews, 68, 59-75. doi: /10.1016/j.quascirev.2013.01.030
DMR. (2007). Geological Map of Changwat Songkhla. Department of Mineral Resources, Thailand.
Duller, G. A. T. (2014). Luminescence Dating. In W. J. Rink & J. Thompson (Eds.), Encyclopedia of Scientific Dating Methods (pp. 1-21). Springer Netherlands. doi: /10.1007/978-94-007-6326-5_125-1
Durcan, J. A., King, G. E., & Duller, G. A. (2015). DRAC: Dose Rate and Age Calculator for trapped charge dating. Quaternary Geochronology, 28, 54-61. doi: /10.1016/j.quageo.2015.03.012
Duval, M., Arnold, L. J., & Rixhon, G. (2020). Electron spin resonance (ESR) dating in Quaternary studies: evolution, recent advances and applications. Quaternary International, 556, 1-10. doi: /10.1016/j.quaint.2020.07.044
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2). doi: /10.1029/2005RG000183
Galbraith, R. F., & Roberts, R. G. (2012). Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations. Quaternary Geochronology, 11, 1-27. doi: /10.1016/j.quageo.2012.04.020
IPCC. (2021). Summary for policymaker In V. Z. Masson-Delmotte, P, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3-32). doi: /10.1017/9781009157896.001
Kanplumjit, T., Sangkarat, P., Koonpoon, R., & Muenjorn, S. (2015). Local GPS Control Point Online Network at Changwat Songkhla Rajamangala University of Technology Srivijaya. https://link.psu.th/sYudH (in Thai)
Kongsen, S., Phantuwongraj, S., & Choowong, M. (2021). Distinguishing Late Holocene storm deposit from shore-normal beach sediments from the Gulf of Thailand. Frontiers in Earth Science, 9, 625926. doi: /10.3389/feart.2021.625926
Kreutzer, S., Schmidt, C., Fuchs, M., C, Dietze, M., Fischer, M., & Fuchs, M. (2012). Introducing an R package for luminescence dating analysis. Ancient TL, 30(1), 1-8. https://link.psu.th/13hPS
Lowick, S., & Preusser, F. (2009). A method for retrospectively calculating the water content for silt-dominated desiccated core samples. Ancient TL, 27(1), 9-14. https://link.psu.th/QZ9ce
Murray, A., & Wintle, A. (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements, 32. doi: /10.1016/S1350-4487(99)00253-X
Ngernkerd, P., Choowong, M., Choowong, N., & Surakiatchai, P. (2021). Late Pleistocene climate variation on the Khorat Plateau, northeastern Thailand inferred from the remnants of sand dunes. Bulletin of the Geological Society of Malaysia, 71. doi: /10.7186/bgsm71202115
Noppradit, P. (2013). Palesoeismological investigations of the Eastern part of the Khlong Marui fault zone in Surat Thani province, Southern Thailand [Master's thesis, Prince of Songkla University]. https://link.psu.th/np23x
Noppradit, P., Pradit, S., Muenhor, D., Doungsuwan, N., Whangsani, U., Sama, N., & Towatana, P. (2021). Investigation of 37 years weather record and its relation to human health: A case study in Songkhla Province, Southern Thailand. International Journal of Agricultural Technology, 17(4), 1507-1520. https://link.psu.th/yw2sH
Noppradit, P., Schmidt, C., Dürrast, H., & Zöller, L. (2019). Late Quaternary evolution of Songhkla coast, Southern Thailand, revealed by OSL dating. Chiang Mai Journal of Science, 46(1), 152-164. https://link.psu.th/yEsCP
Prescott, J. R., & Hutton, J. T. (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements, 23(2-3), 497-500. doi: /10.1016/1350-4487(94)90086-8
Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., & Spencer, J. Q. (2008). Luminescence dating: basics, methods and applications. E&G Quaternary Science Journal, 57(1/2), 95-149. doi: /10.3285/eg.57.1-2.5
Rushby, G. (2022). Methodological approaches to reconstructing storms, relative sea-level change, and coastal evolution in the Mid-and Late-Holocene [Doctoral dissertation, University of Sheffield]. https://link.psu.th/xd6qM
Saminpanya, S., & Denkitkul, N. (2020). Micromorphology, mineralogy, and geochemistry of sediments at the tham lod rock shelter archaeological site in Mae Hong Son, Thailand: Suggestions of a late pleistocene climate. Journal of Cave and Karst Studies, 51. doi: /10.4311/2019ES0111
Sattayasansakul, O. (2005). Study of brick and clay handicrafts in Thananghom, Songkhla. Parichart Journal, Thaksin University, 18(1), 43-50. https://link.psu.th/SZxsh (in Thai)
Schmidt, C., & Zöller, L. (2016). Lumineszenzdatierung als Schlüssel zur Vergangenheit: kaltes Leuchten von Mineralen. Chemie in unserer Zeit, 50(3), 188-197. doi: /10.1002/ciuz.201600703 (in German)
Shennan, I., Long, A., J. , & Horton, B., P. . (2015). Handbook of sea‐level research. Wiley-Blackwell. doi: /10.1002/9781118452547
Shi, Y., Yu, G., Liu, X., Li, B., & Yao, T. (2001). Reconstruction of the 30–40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(1-2), 69-83. doi: /10.1016/S0031-0182(01)00216-4
Tauseef, M., Ray, E., Paul, D., Malik, J. N., & Ahmad, I. (2022). Mineralogical, geochemical, and magnetic susceptibility variations in the loess-paleosol sequence from Pattan, Kashmir Valley, India record an enhanced Indian summer monsoon around 35 ka. Quaternary International, 616, 55-66. doi: /10.1016/j.quaint.2021.12.014
Thien, S. J. (1979). A flow diagram for teaching texture‐by‐feel analysis. Journal of Agronomic education, 8(1), 54-55. doi: /10.2134/jae.1979.0054
Tongsang, B. (2016). Average Accumulation Rate Deposition of Sand Dune on Sathing-Pra Peninsula, Songkhla Province The 6th SKRU Conference: Focus on Education and Culture for Community Development, Songkhla, Songkhla, Thailand. https://link.psu.th/mTP7y (in Thai)
Tongsang, B. (2021). Evidence of Paleo Sea Level Change in Middle Holocene, Lower Part of Sating-Pra Peninsula Region, Southern Thailand YRU Journal of Science and Technology, 6(2), 181-189. https://link.psu.th/MPxYg (in Thai)
Tongsang, B., Chusiri, N., Kessaratikoon, P., & Putsukee, T. (2019). Paleogeography of Sating-Pra Peninsula, Southern Thailand. Journal of Yala Rajabhat University, 14(1), 73-84. https://link.psu.th/pjGX7 (in Thai)
Trisirisatayawong, I., Naeije, M., Simons, W., & Fenoglio-Marc, L. (2011). Sea level change in the Gulf of Thailand from GPS-corrected tide gauge data and multi-satellite altimetry. Global and Planetary Change, 76(3-4), 137-151. doi: /10.1016/j.gloplacha.2010.12.010
Wallinga, J., & Cunningham, A. C. (2015). Luminescence dating, uncertainties and age range. In W. Rink & J. Thompson (Eds.), Encyclopedia of scientific dating methods (pp. 440-445). Springer Netherlands.
Wintle, A., & Adamiec, G. (2017). Optically stimulated luminescence signals from quartz: A review. Radiation Measurements, 98, 10-33. doi: /10.1016/j.radmeas.2017.02.003
Yang, B., Shi, Y., Braeuning, A., & Wang, J. (2004). Evidence for a warm-humid climate in arid northwestern China during 40–30 ka BP. Quaternary Science Reviews, 23(23-24), 2537-2548 doi: /10.1016/j.quascirev.2004.06.010