แนวโน้มการเลือกแผนการศึกษาต่อโดยใช้การเรียนรู้ของเครื่อง ด้วยการเปรียบเทียบผลระหว่าง ARTIFICIAL NEURAL NETWORK และ SUPPORT VECTOR MACHINE

Trend of Selection for Study Planning Using Machine Learning by Comparing the Results Between Artificial Neural Network and Support Vector Machine

Authors

  • ฐิติชัย รักบำรุง
  • พัสกร แนวประณีต
  • ชลธิชา ภูริปาณิก
  • พรสุดา ชูพันธ์

Keywords:

Machine Learning, Artificial Neural Network, Support Vector Machine

Abstract

รายงานการวิจัยฉบับนี้เป็นการหาแนวโน้มการเลือกแผนการศึกษาต่อระดับมัธยมศึกษาตอนปลาย ระหว่างโปรแกรมเน้นความสามารถทางวิทยาศาสตร์และคณิตศาสตร์ กับโปรแกรมเน้นความสามารถทางภาษา โดยใช้การเรียนรู้ของเครื่องมาช่วยวิเคราะห์ข้อมูลแบบ Supervised Learning เปรียบเทียบ 2 เทคนิคได้แก่ เทคนิค Artificial Neural Network และเทคนิค Support Vector Machine ด้วยจำนวนชุดข้อมูลตัวอย่าง 908 ชุด วัตถุประสงค์การวิจัย 1) เพื่อสร้างแบบจำลองการวิเคราะห์แนวโน้มการเลือกแผนการศึกษาต่อระหว่างโปรแกรมเน้นความสามารถทางวิทยาศาสตร์และคณิตศาสตร์กับโปรแกรมเน้นความสามารถทางภาษา 2) เพื่อเปรียบเทียบประสิทธิภาพแบบจำลองการเลือกแผนการศึกษาต่อระหว่าง เทคนิค Artificial Neural Network และเทคนิค Support Vector Machine พบว่า เมื่อนำข้อมูลมาสร้างแบบจำลองหาร้อยละค่าความถูกต้อง (accuracy) โดยการแบ่งข้อมูลชุดเรียนรู้ (training set) ร้อยละ 80 และข้อมูลชุดทดสอบ (testing set) ร้อยละ 20 การวิเคราะห์ค่าความถูกต้อง (accuracy) พบว่า 1) เทคนิค Artificial Neural Network มีค่าความถูกต้องที่ร้อยละ 80 2) เทคนิค Support Vector Machine มีค่าความถูกต้องที่ร้อยละ 85  This research is to finding trends for decision in the selection of high school study plans between sciences and mathematics plan and arts plan by using machine learning to help analyze data using Supervised Learning by comparing 2 techniques; Artificial Neural Network and Support Vector Machine with a total of 908 sample data sets. The objectives of research were 1) to create a model of trends analyze for decision to select high school study plans between sciences and mathematics plan and arts plan 2) to compare the performance of the selection of high school study plans model by Artificial Neural Network and Support Vector Machine techniques. It was found that when the data were used to find the percentage of accuracy by dividing of the training set; the training set was 80 percent and the testing set was 20 percent. The accuracy analyzing was as follows: 1) Artificial Neural Network 80 percent 2) Support Vector Machine 85 percent.

References

นนท์ บุญนิธิประเสริฐ และ ชัยพร เขมะภาตะพันธ์. (2552). การกรองข้อความภาษาไทยและภาษาอังกฤษของบริการส่งข้อความสั้นบนเครือข่ายโทรศัพท์เคลื่อนที่. Proceeding of The 7th National. Conference on Computing and Information Technology (NCCIT2009), Bangkok, หน้า 34-39.

โรงเรียนสาธิต “พิบูลบำเพ็ญ” มหาวิทยาลัยบูรพา. (2566). หลักสูตรของโรงเรียน. เข้าถึงได้จาก http://www.st.buu.ac.th/html/index.php/th/abouts-th/course

Adcock, J.C. Allen, E. Day, M. Frick, S. Hinchliff, J. Johnson, M. Morley-Short, S. Pallister, S. Price, A.B. & Stanisic, S. (2015). Advances in quantum machine learning. Retrieved from https://www.researchgate.net/publication/286513346

Aly, W. M., Hegazy. O. F., & Rashad, H. M. N. (2013). Automated student advisory using Machine Learning. International Journal of Computer Applications, 8(19), p.p 19-24.

Chapman, P. Clinton, J. Kerber, R. Khabaza, T. Reinartz, T. Shearer, C. and Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining guide. SPSS Inc.

Drake, Guido Van Rossum Fred L. (2003). An introduction to Python. Network Theory Limited.

Géron, A. (2017). Hands-on machine learning with Scikit-Learn and Tensor Flow. CA. O'Reilly Media.

Han, J. and Kamber, M. (2001). Data mining concepts and techniques. The Morgan Kaufmann Publishers.

Jaroenpuntaruk, V. Wichadakul, D. (2015). Utilizing data mining techniques to forecast student academic achievement of Kasetsart University Laboratory School Kamphaeng Saen Campus Educational Research and Development Center. Veridian E-J Sci Technol Silpakorn Univ. 2(2), pp. 1–17.

Joyce, J. (2003). Bayes’ theorem. Retrieved from https://plato.stanford.edu/archives/spr2019/entries/bayes-theorem/

Mitchell, T.M. (1997). Machine learning. McGraw-hill.

Pedregosa, F. Varoquaux, G. Gramfort, A. Michel, V. Thirion, B. Grisel, O. Blondel, M. Prettenhofer, P. Weiss, R. Dubourg, V. Vanderplas, J. Passos, A. Cournapeau, D. Brucher, M. Perrot, M. & Duchesnay, É. Scikit-learn. (2011). Machine learning in Python. Journal of Machine Learning Research. 12(85), p.p. 28252830.

Pupale, R. (2018). Support Vector Machines (SVM) – An Overview. Retrieved from https://towardsdatascience.com/https-medium-com-pupalerushikesh-svm-f4b42800e989

Witten, I. H. and Frank, E. (2005). Data mining: Practical machine learning tools and techniques. The Morgan Kaufmann Publishers.

Additional Files

Published

2024-01-16