การประมาณค่ากำลังการผลิตขั้นต้นของแพลงก์ตอนพืชบริเวณอ่าวไทยตอนใน
Estimation of Primary Productivity of Phytoplankton in the Inner Gulf of Thailand
Keywords:
กำลังการผลิตขั้นต้น , คลอโรฟิลล์, แพลงก์ตอนพืช , อ่าวไทยตอนใน, primary productivity, chlorophyll, phytoplankton, inner Gulf of ThailandAbstract
งานวิจัยนี้ศึกษากำลังการผลิตขั้นต้นของน้ำทะเลผิวหน้าบริเวณอ่าวไทยตอนใน ในเดือนมิถุนายน พ.ศ. 2560 เดือน ตุลาคม พ.ศ. 2560 และเดือนเมษายน พ.ศ. 2561 ด้วยวิธีวัดปริมาณออกซิเจนละลายของขวดสว่างและขวดมืด พบว่า มีค่าอยู่ ในช่วง 0.47-116.88 มิลลิกรัมคาร์บอนต่อลูกบาศก์เมตรต่อชั่วโมง โดยบริเวณปากแม่น้ำมีค่าเฉลี่ยสูงสุด และลดลงบริเวณชายฝั่งตะวันออก ชายฝั่งตะวันตก กลางอ่าว และปากอ่าว ตามลำดับ (41.12±29.90 20.59±6.40 8.82±5.23 3.43±1.46 และ 0.47±0.00 มิลลิกรัมคาร์บอนต่อลูกบาศก์เมตรต่อชั่วโมง) เมื่อพิจารณาตามช่วงเวลา พบว่า ในช่วงเปลี่ยนฤดูมรสุมมีค่า เฉลี่ยสูงสุด และลดลงในต้นฤดูมรสุมตะวันตกเฉียงใต้ และฤดูร้อน ตามลำดับ (19.89±17.29 16.94±9.67 และ 13.73±3.94 มิลลิกรัมคาร์บอนต่อลูกบาศก์เมตรต่อชั่วโมง) นอกจากนี้ ได้ทำการศึกษากำลังการผลิตขั้นต้นแยกตามขนาดแพลงก์ตอนพืช ในเดือนเมษายน พ.ศ. 2561 ด้วยวิธีคาร์บอน-13 พบว่า กำลังการผลิตขั้นต้นของ (1) ไมโครแพลงก์ตอนพืช (2) นาโนแพลงก์ตอนพืช และ (3) พิโคแพลงก์ตอนพืชในบริเวณปากแม่น้ำ ชายฝั่งตะวันตก และปากอ่าว มีค่าเฉลี่ยอยู่ที่ (1) 4.17 0.61 0.17 (2) 1.68 0.25 0.06 และ (3) 1.40 0.66 0.28 มิลลิกรัมคาร์บอนต่อลูกบาศก์เมตรต่อชั่วโมงตามลำดับ โดยไมโครแพลงก์ตอนพืช และนาโนแพลงก์ตอนพืช มีสัดส่วนกำลังการผลิตขั้นต้นมากบริเวณปากแม่น้ำ และลดลงบริเวณชายฝั่ง ตะวันตก และบริเวณปากอ่าว ตามลำดับ ส่วนพิโคแพลงก์ตอนพืชมีสัดส่วนกำลังการผลิตขั้นต้นในทิศทางตรงกันข้าม แม้พิโคแพลงก์ตอนพืชจะมีสัดส่วนกำลังการผลิตขั้นต้นที่น้อยบริเวณปากแม่น้ำ แต่ค่าประสิทธิภาพกำลังการผลิตขั้นต้นต่อหน่วย คลอโรฟิลล์เอ (PP/Chl a) ของพิโคแพลงก์ตอนพืช มีค่าสูงกว่าไมโครแพลงก์ตอนพืชและนาโนแพลงก์ตอนพืช ในทุกสถานีและพื้นที่โดยมีค่า PP/Chl a อยู่ในช่วง 7.35-92.11 0.76-33.67 และ 0.80-8.65 มิลลิกรัมคาร์บอนต่อมิลลิกรัมคลอโรฟิลล์เอ ต่อชั่วโมง ตามลำดับ The study of primary productivity of surface seawater in the inner Gulf of Thailand using O2 light-dark bottle method was conducted during June 2017, October 2017 and April 2018. The primary productivity was in the range of 0.47 to 116.88 mg C m -3 h -1 . Its average was highest in the river-mouth region and declined toward the east coast, the west coast, the central region and the open region (41.12±29.90 20.59±6.40 8.82±5.23 3 .4 3±1 .4 6 and 0 .4 7±0 .0 0 mg C m-3 h -1 ). For seasonal primary productivity, its average was highest in the changing-monsoon season and declined toward the southwest monsoon and the summer (19.89± 17.29 16.94±9.67 and 13.73±3.94 mg C m-3 h -1 ). Furthermore, the investigation of size-fractionated primary productivity with 13C method was carried out during April 2018.The result revealed that its average of (a) microphytoplankton, (b) nanophytoplankton and (c) picophytoplankton in the river-mouth region, the west coast and the open region were (a) 4.17 0.61 0.17, (b) 1.68 0.25 0.06 and (c) 1.40 0.66 0.28 mg C m-3 h -1, respectively. The proportion of primary productivity of microphytoplankton and nanophytoplankton was high in the river-mouth region and declined toward the west coast and the open region whereas the reverse was true for picophytoplankton. Although, picophytoplankton contributed the low proportion of primary productivity at the river-mouth region, but its primary productivity per chlorophyll a unit (PP/Chl a) was higher than that of microphytoplankton and nanophytoplankton (7.35-92.11, 0.76-33.67 and 0.80-8.65 mg C mg Chl a -1 h -1) in every station and region.References
Boonkwan, S. (2013). Seasonal variations of phytoplankton and primary production in the Inner Gulf of Thailand. In MSc Thesis. (pp. 1-96). Chonburi: Burapha University. (in Thai)
Cho, B. C., & Azam, F. (1990). Biogeochemical significance of bacterial biomass in the ocean's euphotic zone. Marine Ecology Progress Series,63, 253-259.
Cullen, J. J. (2001). Primary Production Methods. Retrieved January 13, 2021, from doi:10.1006/rwos.2001.0203
Decembrini, F., Caroppo, C., & Azzaro, M. (2009). Size structure and production of phytoplankton community and carbon pathways channelling in the Southern Tyrrhenian Sea (Western Mediterranean). Deep Sea Research Part II: Topical Studies in Oceanography, 56, 687-699.
Hama, T., Miyazaki, T., Ogawa, Y., Iwakuma, T., Takahashi, M., Otsuki, A., & Ichimura, S. (1983). Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Marine Biology, 73(1), 31-36.
Hansen, H. P., & Koroleff, F. (1999). Determination of nutrients. In Grasshoff, K., Kremling, K., & Ehrhardt M. (3rd Eds.). Methods of Seawater Analysis. (pp. 159-228). Weinheim: Wiley-VCH Verlag GmbH.
Iriarte, A., & Purdie, D. A. (1994). Size distribution of chlorophyll a biomass and primary production in a temperate estuary (Southampton Water): the contribution of photosynthetic picoplankton. Marine Ecology Progress Series, 115, 283-297.
Jaroensuk, P. (2018). Primary productivity of size-fractionated phytoplankton in the Inner Gulf of Thailand. In MSc Thesis. (pp. 1-92). Bangkok: Chulalongkorn University. (in Thai)
Lursinsap, A., Chaiyakham, K., & Sirimontaporn, P. (1986). Primary production and the potential of fish production in Songkra lake. In Proceeding Kasetsart University Seminar. (pp. 156-163). Bangkok: Kasetsart University. (in Thai)
Millero, F. J. (2006). Chemical Oceanography. Boca Raton: CRC Press.
Musikasung, W., Yusoff, M. S. B., & Razak, S. B. A. (1999). Primary production determination in the South China Sea, area I: Gulf of Thailand and east coast of Peninsular Malaysia. In Proceeding of the First Technical Seminar on Marine Fishery Resources Survey in the South China Sea, Area I: Gulf of Thailand and Peninsular Malaysia, 24-26 November 1997, Bangkok, Thailand. (pp. 135-146). Samutprakan: Southeast Asian Fisheries Development Center.
Nishibe, Y, Takahashi, K., Shiozaki, T., Kakehi, S., Saito, H., & Furuya, K. (2015). Size-fractionated primary production in the Kuroshio Extension and adjacent regions in spring. Journal of Oceanography, 71, 27-40.
Parsons, T. R., Maita, Y., & Lalli, C. M. (1984). 7.2. Determination of carbonate alkalinity and total carbon dioxide (all forms). In Parsons, T. R., Maita, Y., & Lalli, C. M. (Eds.), A Manual of Chemical and Biological Methods for Seawater Analysis. (pp. 142-149). Amsterdam: Pergamon.
Phromthong, I. (1999). Dynamics and diversity of phytoplankton in Tha Chin estuary, Samut Sakhon province. In MSc Thesis. (pp. 1-141). Bangkok: Chulalongkorn University. (in Thai)
Round, F. E. (1984). The ecology of algae. London: Cambridge University Press.
Sojisuporn, P., Chuchuai, T., & Kooptasin, J. (2019). Grain-size distribution of surface sediment in the inner Gulf of Thailand. Burapha Science Journal, 24(3), 958-977. (in Thai)
Strickland, J. D. H., & Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis. Ottawa: The Alger Press Ltd.
Suchatpong, C., Panpet, S., Bunyajetpong, S., & Lirdwitayaprasit, T. (2021). Primary productivity of two phytoplankton cell sizes in laboratory. Burapha Science Journal, 26(3), 1947-1965. (in Thai)
Varela, M., Fernandez, E., & Serret, P. (2002). Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995-1996. Deep Sea Research Part II: Topical Studies in Oceanography, 49, 749-768.
Wetzel, R. G., & Likens, G. E. (2000). Limnological Analyses. New York: Springer.
Zhang, Y., Yin, Y., Wang, M., & Liu, X. (2012). Effect of phytoplankton community composition and cell size on absorption properties in eutrophic shallow lakes: field and experimental evidence. Optics Express, 20, 11882-11898.