การพัฒนาเม็ดบีดอัลจิเนตบรรจุน้ำมันเยื่อหุ้มเมล็ดฟักข้าว สำหรับผลิตภัณฑ์เซรั่มบำรุงผิว
Development of Alginate Beads Containing Momordica cochinchinensis Aril Oil for Skin Nourishing Serum Products
Keywords:
น้ำมันฟักข้าว , เม็ดบีดอัลจิเนต , ผลิตภัณฑ์เซรั่มบำรุงผิว , ความคงตัว, Momordica cochinchinensis oil, alginate beads, skin nourishing serum products, stabilityAbstract
เบต้าแคโรทีนเป็นสารสำคัญที่อยู่ในฟักข้าวและสามารถใช้เป็นส่วนประกอบในผลิตภัณฑ์เครื่องสำอางได้แต่สารเบต้าแคโรทีนมีความคงตัวต่ำ งานวิจัยนี้มีวัตถุประสงค์เพื่อพัฒนาตำรับสูตรเม็ดบีดอัลจิเนตผสมน้ำมันฟักข้าวเพื่อใช้เป็น สารสำคัญในผลิตภัณฑ์เซรั่มบำรุงผิว ปัจจัยที่ศึกษาคือชนิดของสารลดแรงตึงผิวและสารอิมัลซิไฟเออร์ในตำรับสูตรเม็ดบีดที่มีต่อประสิทธิภาพการกักเก็บ ความคงตัวของสารเบต้าแคโรทีน และความคงตัวทางเคมีกายภาพของเม็ดบีด รวมถึงศึกษาชนิด สารเพิ่มความหนืดที่มีผลต่อความคงตัวของผลิตภัณฑ์เซรั่มบำรุงผิวผสมเม็ดบีด ผลการศึกษาพบว่า สารอิมัลซิไฟเออร์ที่เหมาะสมที่สุดสำหรับการผลิตเม็ดบีดอัลจิเนตฟักข้าว คือLipomulse™Luxe เนื่องจากมีประสิทธิภาพในการกักเก็บสารเบต้า แคโรทีนสูงที่สุดอย่างมีนัยสำคัญทางสถิติ (p<0.05) เม็ดบีดที่ผลิตได้มีลักษณะทรงกลมสีส้มทึบแสง เมื่อศึกษาในสภาวะเร่ง พบว่าที่สภาวะพีเอช 5 เม็ดบีดมีปริมาณสารเบต้าแคโรทีนคงเหลือสูงสุดอย่างมีนัยสำคัญทางสถิติ (p<0.05) เมื่อเก็บผลิตภัณฑ์เซรั่มบำรุงผิวในสภาวะเร่ง เป็นระยะเวลา 8 สัปดาห์พบว่าค่าพีเอชทุกตำรับสูตรลดลงอย่างมีนัยสำคัญทางสถิติ (p<0.05) ค่าความแตกต่างของสี (∆E*) ของเม็ดบีดอยู่ในช่วง 1.68 ถึง 3.93 เม็ดบีดตำรับสูตรที่มีส่วนผสมของสารต้านอนุมูลอิสระ (X2A) และตำรับสูตรที่มีส่วนผสมสารต้านอนุมูลอิสระร่วมกับสารแต่งสี (X2P) มีความเหมาะสมที่ใช้เป็นสารสำคัญในตำรับสูตรผลิตภัณฑ์เซรั่มบำรุงผิว โดยที่สารเบต้าแคโรทีนคงเหลือในเม็ดบีดมากกว่าร้อยละ 70 สารเพิ่มความหนืดชนิด Carbopol® ultrez 20 มีความเหมาะสมสำหรับการตั้งตำรับสูตรผลิตภัณฑ์เซรั่มบำรุงผิว เนื่องจากมีความคงตัวสูงที่สุดและยังสามารถแขวนลอยเม็ดบีดได้ยาวนานเมื่อทำการทดสอบเป็นระยะเวลา 8 สัปดาห์ Beta-carotene is the active component in gac (Momordica cochinchinensis) and can be used as an ingredient in cosmetic products. However, beta-carotene has poor stability, so this research aimed to develop a gac oil loaded alginate beads (GAB) formulation used as an active ingredient in the skin nourishing serum products. These studied the types of surfactants and emulsifiers in GAB formulations on the entrapment efficiency and stability of beta-carotene, including the physicochemical stability of GAB. In addition, the type of thickening agent which affects the stability of skin-nourishing serum products with GAB was also studied. The studies showed that the most appropriate emulsifier for the GAB production was Lipomulse™ Luxe, due to the statistically highest entrapment efficiency in beta-carotene (p<0.05). The GAB was opaque spheres with orange color. GAB had the highest beta-carotene remaining content at a pH equal 5 (p<0.05) under accelerated conditions. When skin nourishing serum products were stored under accelerated conditions for 8 weeks, the pH value of all formulations was significantly decreased (p<0.05). The color difference (∆E*) of the beads appeared in the range of 1.68 to 3.93. Antioxidant-containing GAB (X2A) and antioxidant-containing GAB with colored pigment (X2P) formulations were optimum as active ingredients in skin-nourishing serum formulations due to beta-carotene remaining content in the GAB exceed 70%. Carbopol® ultrez-20 was the appropriate thickening agent for the skin nourishing serum products formulation due to the highest stability and the ability to suspend GAB for 8 weeks.References
Abdulqader, A., Ali, F., Ismail, A., & Esa, N. M. (2018). Gac (Momordica cochinchinensis Spreng.) fruit and its potentiality and superiority in health benefits. Journal of Contemporary Medical Sciences, 4, 179-186.
Aoki, H., Kieu, N. T. M., Kuze, N., Tomisaka, K., & Chuyen, N. V. (2002). Carotenoid pigments in gac fruit (Momordica cochinchinensis SPRENG). Bioscience, Biotechnology, and Biochemistry, 66(11), 2479-2482.
Bell, T., Alamzad, R., & Graf, B. A. (2016) in Proceedings of the Nutrition Society (E94). United State: Crossmark
Benderly, D., & Zolotarsky, Y. (2013). Beyond thickening –use of alkyl acrylate crosspolymer in personal care formulations. ACS Symposium Series. American Chemical Society: Washington, DC
Blaak, J., Wohlfart, R., & Schurer, N. Y. (2011). Treatment of aged skin with a pH 4 skin care product normalizes increased skin surface pH and improves barrier function: results of a pilot study. Journal of Cosmetics, Dermatological Sciences and Applications, 1, 50-58.
Bnyan, R., Khan, I., Ehtezazi,T., Saleem, I., Gordon, S., Neill,F., & Roberts, M. (2018). Surfactant effects on lipidbased vesicles properties. Journal of Pharmaceutical Sciences,107(5), 1237-1246.
Boonme, P. (2007). Applications of microemulsions in cosmetics. Journal of Cosmetic Dermatology, 6, 223–228
Braithwaite, M. C., Tyagi, C., Tomar, L. K., Kumar, P., Choonara, Y. E., & Pillay, V. (2014). Nutraceutical-based therapeutics and formulation strategies augmenting their efficiency to complement modern medicine: an overview. Journal of Functional Foods, 6, 82–99.
Chamchong, M., Waeruwanaruk, D., Guntornkun, C., & Alam, T. (2021). Effect of storage conditions on rancidity and antioxidant activity of gac oil compared with healthy oils. Agriculture and Natural Resources, 55, 201-208.
Chan, E. S. (2011). Preparation of Ca-alginate beads containing high oil content: influence of process variables on encapsulation efficiency and bead properties. Carbohydrate Polymers, 84, 1267–1275.
Cheng, B., Li, D., Huo, Q., Zhao, Q., Lan, Q., Cui, M., Pan, W., & Yang, X. (2018). Two kinds of ketoprofen enteric gel beads (CA and CS-SA) using biopolymer alginate. Asian Journal of Pharmaceutical Sciences, 13, 120-130.
Chuang, J.J., Huang, Y.Y., Lo, S.H., Hsu, T.F., Huang, W.Y., Huang, S.L., & Lin, Y.S. (2017). Effects of pH on the shape of alginate particles and its release behavior. International Journal of Polymer Science, 2017, 1-9.
Dhiaa, A. H. (2012). The temperature effect on the viscosity and density of xanthan gum solution. KUFA Journal of Engineering, 3, 17-30.
Doka, O., Ficzek, G., Luterotti, S., Bicanic, D., Spruijt, R., Buijnsters, J. G., Szalay, L., & Vegvari, G. (2013). Simple and rapid quantification of total carotenoids in lyophilized apricots (Prunus armeniaca L.) by means of reflectance colorimetry and photoacoustic spectroscopy. Food Technology and Biotechnology, 51(4), 453-459.
Durante, M., Lenucci, M. S., Laddomada, B., Mita, G., & Caretto, S. (2012). Effects of sodium alginate bead encapsulation on the storage stability of durum wheat (Triticum durum Desf.) bran oil extracted by supercritical CO2. Journal of Agricultural and Food Chemistry, 60, 10689-10695.
Flores-Miranda, G. A., Toro, G. V., & Yanez-Fernandez, J. (2015). Stability evaluation of beta-carotene nanoemulsions prepared by homogenization-emulsification process using stearic acid as oil phase. Revista Mexicana de Ingenieria Quimica, 14(3), 667-680.
Ghosh, P. K., Majithiya, R. J., Umrethia, M. L., & Murthy, R. S. R. (2006). Design and development of microemulsion drug delivery system of acyclovir for improvement of oral bioavailability. American Association of Pharmaceutical Scientists, 7(3), E1-E6.
Inthorn, J., Chindaluang, Y., & Sisopa, P. (2018). Development of emulsion bead for cosmetic product. in 4th Pibulsongkram Research Conference, 4, 443-449 (in Thai).
Jang, M., & Kim, G. H. (2016). Antioxidant activity and HPLC analysisc of lycopene, beta carotene and alpha tocopherol from geuk (Momordica cochinchinesis spreng) fruit. Journal of International Scientific Publications: Agriculture & Food, 2(1), 430-438.
Kong, L., Bhosale, R., & Ziegler, G. (2018) Encapsulation and stabilization of β-carotene by amylose inclusion complexes. Food Research International, 105, 446-452
Leevutinun, P., Krisadaphong, P., & Petsom, A. (2015). Clinical evaluation of gac extract (Momordica cochinchinensis) in an antiwrinkle cream formulation. Journal of Cosmetic Science, 66, 1-13.
Muller-Maatsch, J., Sprenger, J., Hempel, J., Kreiser, F., Carle, R., & Schweiggert, R. M. (2017). Carotenoids from gac fruit aril (Momordica cochinchinensis [Lour.] Spreng.) are more bioaccessible than those from carrot root and tomato fruit. Food Research International, 99 part 2, 928-935.
Najih, Y. A., Rakhma, D. N., Nailufa, Y., & Prasetyowati, R. D. (2020). The effect of vegetable oil combination and surfactant PEG-7 glyceryl cocoate ratio on physical characteristics and physical stability of arbutin microemulsion. Pharmaceutical Practice, 13(3), 147-156.
Petchsomrit, A., Sermkaew, N., & Wiwattanapatapee, R. (2013). Effect of alginate and surfactant on physical properties of oil entrapped alginate bead formulation of curcumin. International Journal of Medical, Pharmaceutical Science and Engineering, 7, 479-483.
Qian, C., Decker, E. A., Xiao, H., & Mc Clements, D. J. (2012). Physical and chemical stability of b-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry, 132, 1221-1229.
Rawlings, A. V., Davies, A., Carlomusto, M., Pillai, S., Zhang, K., Kosturko, R., Verdejo, P., Feinberg, C., Nguyen,L., & Chandar, P. (1996). Effect of lactic acid isomers on keratinocyte ceramide synthesis, stratum corneum lipid levels and stratum corneum barrier function. Archives of Dermatological Research, 288(7), 383-390.
Rowe, R. C., Sheskey, P. J., & Quinn, M. E. (2009). Handbook of Pharmaceutical Excipients (6th ed.). London: Pharmaceutical Press.
Ryu, K. A., Park, P. J., Kim, S. B., Bin, B. H., Jang, D. J., & Kim, S. T. (2020). Topical delivery of coenzyme Q10- loaded microemulsion for skin regeneration. Pharmaceutics, 12(4), 1–15.
Shalviri, A., Sharma, A., Patel, D., & Sayani, A. (2011). Low-surfactant microemulsions for enhanced topical delivery of poorly soluble drugs. Journal of Pharmacy and Pharmaceutical Sciences, 14(3), 315-324.
Tadros, T. (2014). Formulation of Disperse Systems Science and Technology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
Tanongkankit, Y., Sutthaphan, T., Kaewmanas, J., Poonnoy, P., & Narkprasom, K. (2014). Evolutions of betacarotene and lycopene in a natural food colorant from gac (Momordica cochinchinensis Spreng) arils during drying. 3rd International Conference on Nutrition and Food Sciences, 71, 56-60.
Thumthanaruk, B., Laohakunjit, N., & Chism, G. W. (2021). Characterization of spray-dried gac aril extract and estimated shelf life of beta-carotene and lycopene. PeerJ, 9, 1-16.
Toyosaki, T. (2002). Antioxidant effect of b-carotene on lipid peroxidation and synergism with tocopherol in an emulsified linoleic acid model system. International Journal of Food Sciences and Nutrition, 53, 419-423.
Tran, X. T., Parks, S. E., Roach, P. D., Golding, J. B., & Nguyen, M. H. (2016). Effects of maturity on physicochemical properties of Gac fruit (Momordica cochinchinensis Spreng.). Food Science & Nutrition, 4(2), 305-314.
Yang, K. M., & Chiang, P. Y. (2019). Preparation and evaluation of release formulation of γ-oryzanol/algae oil selfemulsified with alginate beads. Marine Drugs, 17(3), 156-166.
Yu, J. S., Roh, H. S., Lee, S., Jung, K., Baek, K. H., & Kim, K. H. (2017). Antiproliferative effect of Momordica cochinchinensis seeds on human lung cancer cells and isolation of the major constituents. Brazilian Journal of Pharmacognosy, 27, 329-333.