การดื้อยาปฏิชีวนะและความหลากหลายทางพันธุกรรมของ Escherichia coli ที่แยกได้จากมูลสุกรในจังหวัดพะเยา

Antibiotic Resistance and Genetic Variation of Escherichia coli Isolated from Swine Feces in Phayao Province

Authors

  • นิศรา บุญเกิด
  • สุรศักดิ์ ใจเขียนดี

Keywords:

การดื้อยาปฏิชีวนะ, Escherichia coli , สุกร, rep-PCR, antibiotic resistance , swine

Abstract

เชื้อดื้ออยาปฏิชีวนะถือเป็นหนึ่งในปัญหาสาธารณสุขที่ทั่วโลกให้ความสำคัญ ซึ่งปัจจุบันพบว่าการใช้ยาปฏิชีวนะที่ ไม่เหมาะสมเป็นปัจจัยสำคัญที่ทำให้เกิดการแพร่กระจายของเชื้อดื้อยา ดังนั้นการติดตามเฝ้าระวังเชื้อ จึงมีความสำคัญอย่างยิ่ง ในการพิจารณาเลือกใช้ยาที่เหมาะสมในสุกร โดยการศึกษานี้ มีวัตถุประสงค์เพื่อศึกษารูปแบบการดื้อยาและความสัมพันธ์ทางพันธุกรรมของ E. coli ที่แยกได้จากมูลสุกรโตเต็มวัย สุกรป่วยและลูกสุกร ในอำเภอเมือง จังหวัดพะเยา จำนวน 166 ไอโซเลต จากผลการทดสอบความไวต่อยาปฏิชีวนะด้วยวิธี Disc Diffusion แสดงให้เห็นว่า E.coli 154 ไอโซเลต (ร้อยละ 92.77) ดื้อต่อยาปฏิชีวนะที่ใช้ในการศึกษาครั้งนี้ โดยพบอัตราการดื้อต่อยา ampicillin ใน E. coli ที่แยกได้จากสุกรโตเต็มวัย สุกรป่วย และลูกสุกรมีค่าเท่ากับร้อยละ 80, 80 และ 95.7 ตามลำดับ จากการวิเคราะห์รูปแบบการดื้อยาของ E. coli พบว่ามีทั้งหมด 16 รูปแบบ โดยรูปแบบการดื้อยาที่พบได้มากที่สุดคือการดื้อต่อยาปฏิชีวนะ 4 ชนิดได้แก่ ampicillin, chloramphenicol, sulfamethoxazole/trimethoprim และ tetracycline ซึ่งพบในเชื้อที่แยกได้จากสุกรโตเต็มวัย สุกรป่วยและลูกสุกร ร้อยละ 20, 23.33 และ 39.33 ตามลำดับ นอกจากนี้ยังพบว่า E. coli ที่แยกได้ จากสุกรทั้งสามกลุ่มมีการดื้อต่อยาปฏิชีวนะที่ใช้ ในการทดสอบตั้งแต่ 3 กลุ่มขึ้นไป ซึ่งจัดเป็น multidrug resistance มีค่าร้อยละ 36.66, 66.66และ 82.62 ตามลำดับ และเมื่อศึกษาความหลากหลายทางพันธุกรรมของเชื้อด้วยวิธี repetitive extragenic palindromic PCR (rep-PCR) พบว่ามีความ หลากหลายของรูปแบบ rep-PCR 15 รูปแบบ (A-O) โดยรูปแบบ rep-PCR ที่พบมากที่สุดคือรูปแบบ D คิดเป็นร้อยละ 43.14 (22/51) แสดงให้เห็นถึงการแพร่กระจายของเชื้อในฟาร์มสุกร ผลการศึกษาข้างต้นแสดงให้เห็นถึงสถานการณ์การดื้อยาและการแพร่กระจายของ E. coli ในสุกร ซึ่งเป็นข้อมูลพื้นฐานในการวางแผนการควบคุมป้องกันปัญหาเชื้อดื้อยาและใช้เป็น แนวทางในการเลือกใช้ยาปฏิชีวนะในสุกรต่อไป   Antibiotic resistance is one of the problems of public health worldwide. Currently, the improper use of antibiotics is an important factor in the spread of drug resistance. Therefore, the monitoring of the drug resistance is crucial for the selection of appropriate drugs in swine. The objectives were investigated the resistance patterns and genetic relationships of 166 E. coli isolates that were isolated from adult swine, sick swine and piglet feces in Muang District, Phayao Province. The results showed that 154 E. coli isolates (92.77%) were resistant to all antibiotics used in this study. It was found that the highest resistance rate to ampicillin, which is equal to 80, 80 and 95.7 % in isolates from adult swine, sick swine, and piglets, respectively. From the analysis of resistance patterns of E. coli, it was found 16 resistance patterns. The highest drug resistance pattern that could be found is ampicillin, chloramphenicol, sulfamethoxazole/trimethoprim and tetracycline. The rate of this drug resistance pattern is 20, 23.33 and 39.13 % in isolates from adult swine, sick swine and piglets, respectively. In addition, 36.66, 66.66 and 82.62 % of these groups were resistant to more than three drug types. The genetic variation of E. coli was studied by repetitive extragenic palindromic PCR (rep-PCR). It found 15 rep-PCR patterns (A-O). The most common rep-PCR pattern is the pattern D that found about 43.14 % (22/51 isolates) and indicated the spread of E. coli in pig farms. The results of all showed the resistance situation of E. coli in swine, which is the basic information in the planning, controlling, and prevention of drug resistance. In addition, it can be used as a guideline for the selection of antibiotics in swine.

References

Boeckel, TP., Gandra, S., Ashok, A., Caudron, Q. et al. (2014). Global antibiotic consumption 2000 to 2010. an analysis of national pharmaceutical sales data. The Lancet infectious disease,14(8), 742-750.

Bogaard, AE. & Stobberingh, EE. (1999). Antibiotic usage in animals: impact on bacterial resistance and public health. Drugs, 58,589–607.

Borriello, P. (2016). UK-veterinary antibiotic resistance and sales surveillance report. Veterinary Medicines Directorate, 3, 11-15.

Busser, E.V., Dewulf, J., Zutter, L.D., Haesebrouck, F., Callens, J., Meyns, T., Maes, W. & Maes, D. (2011). Effect of administration of organic acids in drinking water on faecal shedding of E. coli, performance parameters and health in nursery pigs. The Veterinary Journal, 188, 184–188.

Chen, X., Xu, J., Ren, E., Su, Y. & Zhu, W. (2018). Co-occurrence of early gut colonization in neonatal piglets with microbiota in the maternal and surrounding delivery environments. Anaerobe, 49, 30-40.

European Food Safety Authority. (2012). Technical specifications on the harmonized monitoring and reporting of antimicrobial resistance in Salmonella, Campylobacter and indicator Escherichia coli and Enterococcus spp. bacteria transmitted through food. European Food Safety Authority Journal, 10(6), 27-42.

Herrero-Fresno, A., Ahmed, S., Hansen, M.H., Denwood, M., Zachariasen, C. & Olsen, J.E. (2017). Genotype variation and genetic relationship among Escherichia coli from nursery pigs located in different pens in the same farm. BMC Microbiology,17(5), 1-10.

Lay, K.K., Koowattananukul, C., Chansong, N. & Chuanchuen, R. (2012). Antimicrobial resistance, virulence, and phylogenetic characteristics of Escherichia coli isolates from clinically healthy swine. Foodborne Pathogens and Disease, 9(11), 992-1001.

Lim, C., Takahashi, E., Hongsuwan, M., Wuthiekanun, V., Thamlikitkul, V., Hinjoy, S., Day, N., Peacock, S.J., Limmathurotsakul, D. (2016). Epidemiology and burden of multidrugresistant bacterial infection in a developing country. Epidemiology and Global Health, 5, 180-182.

Magiorakos, A.P., Srinivasan, A., Carey, R. B. and Carmeli, Y. (2012). Multidrug-resistant, extensively drugresistant and pandrugresistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18,268–281.

Paltansing, S., Vlot, J.A., Kraakman, M, Mesman, R., Bruijning, M.L., Bernards, A.T., Visser, L.G. & Veldkamp, K.E. (2013) Extended-Spectrum β-Lactamase–producing Enterobacteriaceae among travelers from the Netherlands. Emerging Infectious Diseases, 19(8), 1206-1213.

Prapatigul, P. (2004). Farmers’ knowledge and practices on antibiotic utilization in broiler production in Chiangmai province, Department of agricultural extension, Faculty of agriculture, Chiangmai university.

Punyadi, P., Thongngen, P., Assawatheptawee, K., Kiddee, A., Tansawai, U., Bunchu, N. & Ritvirool, P. (2018). Dissemination of antibiotic resistant Escherichia coli isolated from blowflies in open air markets Phitsanulok province. The 19th National Graduate Research Conference.769-779. (in Thai).

Sayah, R.S., Kaneene, J.B., Johnson, Y. & Miller, R.A. (2005). Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic and wild-animal fecal samples, human septage, and surface water. Applied and Environmental Microbiology Journal, 71, 1394-1404.

Tongkumkun, P. (2015). Projects and work related to solving drug resistance problems of the Department of Livestock Development. Veterinary Research and Development Center. National Institute of Animal Health Department of Livestock Development. Retrieved July 16, 2020. https://niah.dld.go.th/th/Section/bact/kitjakum/kitjakum_1/ Drug Resistance Project in Thailand.pdf.

Tsiloyiannis, V.K., Kyriakis, S.C., Vlemmas, J. & Sarris, K., (2001). The effect of organic acids on the control of porcine post-weaning diarrhoea. Research in Veterinary Science,70, 287–293.

Valiakos, G., Vontas, A., Tsokana, C.N., Giannakopoulos, A., Chatzopoulos, D. & Billinis, C. (2016). Resistance in Escherichia coli strain isolated from pig faecal sample and pig farm workers, Greece. American Journal of Animal and Veterinary Sciences,11(4),142-144.

Versalovic, J., Koeuth, T. & Lupski, J.R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Research,19(24), 6823-6831.

Wintersdorff, C.J.H., Penders, J., Niekerk, J.M., Mills, N.D., Majumder, S., Alphen,L.B, Savelkoul, P.H.M.& Wolffs, P.F.G. (2016). Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology,7(173), doi.org/10.3389/fmicb.2016. 00173.

Downloads

Published

2022-12-07