การขยายพันธุ์ในหลอดทดลองของต้นจอกหินตะนาวศรี (Dorcoceras brunneum C. Puglisi) พืชใกล้สูญพันธ์ุของประเทศไทย

In vitro Propagation of Dorcoceras brunneum C. Puglisi, An Endangered Plant of Thailand

Authors

  • โรจนกร เชิงปัญญา
  • นิรุตต์ จงศร
  • อัจฉรา เมืองครุธ
  • วิทยาพร พรชุติ
  • ทยา เจนจิตติกุล
  • งามนิจ ชื่นบุญงาม

Keywords:

ต้นจอกหินตะนาวศรี , พืชเฉพาะถิ่น , การขยายพันธุ์โดยจุลวิธี, การเกิดอวัยวะจากชิ้นพืชเริ่มต้นโดยตรง, Dorcoceras brunneum , endemic plant , micropropagation, direct organogenesis

Abstract

งานวิจัยนี้ศึกษาวิธีการขยายพันธุ์ต้นจอกหินตะนาวศรี (Dorcoceras brunneum C.Puglisi) ซึ่งเป็นพืชใกล้สูญพันธุ์ ของประเทศไทยโดยใช้วิธีการเพาะเลี้ยงเนื้อเยื่อพืช ชิ้นส่วนเริ่มต้นใช้ใบตำแหน่งที่ 2 และ 3 ซึ่งมีขนาดความยาว 3.5 – 4 เซนติเมตร และกว้าง 1.5– 2 เซนติเมตร ถูกตัดออกจากบริเวณยอดของยอดปลอดเชื้อที่มีอายุ 16 สัปดาห์ จากนั้นตัดเฉพาะส่วนกลางและโคนใบให้มีขนาด 0.5 x 0.5 ตารางเซนติเมตร และนำไปเลี้ยงบนอาหารสังเคราะห์สูตร Murashige และ Skoog (MS) ที่มีเบนซิลอะดีนีน (N6 -benzyladenine: BA) เข้มข้น 0 – 1 มิลลิกรัม/ลิตร ร่วมกับกรดแนฟทาลีนอะซิติก (1-napthaleneacetic acid: NAA) เข้มข้น 0 – 0.5 มิลลิกรัม/ลิตร นาน 16 สัปดาห์ ผลการศึกษาพบว่าการเลี้ยงส่วนกลางใบของต้นจอกหินตะนาวศรีบนอาหารสังเคราะห์สูตร MS ที่มี BA เข้มข้น 1 มิลลิกรัม/ลิตร ร่วมกับ NAA เข้มข้น 0.1 มิลลิกรัม/ลิตร สามารถชักนำให้เกิดจำนวนยอดใหม่ได้สูงสุด (17.5 ยอด/ชิ้นพืช) กอของยอดใหม่ที่เกิดจากสูตรอาหารนี้ ถูกนำมาตัดแยกเป็นยอดเดี่ยว ก่อนนำยอดเดี่ยวที่มีความสูง 1 เซนติเมตร ไปเลี้ยงบนอาหารสังเคราะห์สูตร MS ที่มีความเข้มข้นของธาตุอาหาร ลดลงครึ่งหนึ่ง (½MS) หรือเข้มข้นตามปกติ ซึ่งมีการเติมหรือไม่เติมผงถ่านกัมมันต์ (activated charcoal: AC) ปริมาณ 2 กรัม/ ลิตร เพื่อชักนำให้เกิดราก เมื่อเลี้ยงยอดบนสูตรอาหารข้างต้นนาน 8 สัปดาห์ พบว่าอาหารสังเคราะห์สูตร ½MS ที่มี AC สามารถชักนำให้เกิดรากใหม่ได้ดีที่สุด (จำนวนรากใหม่ 15.6 ราก/ยอด, ความยาวรากใหม่ 2.1 เซนติเมตร) ผลที่ได้จากการศึกษานี้จะเป็นประโยชน์ต่อการขยายและอนุรักษ์พันธุ์ต้นจอกหินตะนาวศรีซึ่งจะเป็นการช่วยอนุรักษ์ความหลากหลายทางพันธุ์พืชของประเทศไทยอีกทางหนึ่ง   This research presented a propagation protocol for Dorcoceras brunneum C. Puglisi, which is an endangered plant of Thailand, using plant tissue culture technique. The 2nd and 3rd leaves, 3.5–4cm long and 1.5 – 2 cm wide, were cut from shoots of 16-week-old axenic shoots and were chosen as explant material. Then, only middle and basal parts of them were cut to 0.5 x 0.5 cm 2. The explants were cultured on Murashige & Skoog (MS) medium supplemented with 0 –1 mg/L N6 -benzyladenine (BA) and 0 –0.5 mg/L 1-napthaleneacetic acid (NAA) for 16 weeks. The results showed that culturing the middle part of leaf onto MS medium augmented with 1 mg/L BA and 0.1 mg/L NAA produced the highest number of new shoots (17.5 shoots/ explant). Bunches of regenerated shoots from this medium were separated into a single shoot. The single shoot at the height of 1 cm was cultured onto half-strength (½MS) or full-strength MS medium with or without supplementation of 2 g/L activated charcoal (AC) for root induction. After culturing shoots on these media for 8 weeks, ½MS medium supplemented with AC resulted in the best root regeneration (new roots number 15.6 roots/shoot, new root length 2.1 cm). The data obtaining from this study will be helpful for propagation and conservation of D. brunneum, which may provide as another way for maintaining diversity of plant in Thailand.

References

Bairu, M.W., Aremu, A.O., & van Staden, J. (2011). Somaclonal variation in plants: causes and detection methods. Plant Growth Regulation, 63(2), 147–173.

Benson, E.E. (1999). Plant Conservation Biotechnology. London: Taylor & Francis.

Bhatia, P., Ashwath, N., & Midmore, D.J. (2005). Effects of genotype, explant orientation, and wounding on shoot regeneration in tomato. In Vitro Cellular & Developmental Biology – Plant, 41, 457–464.

Blinstrubiene, A., Burbulis, N., Jonytiene, V., & Masiene, R. (2020). Evaluation of factors affecting direct organogenesis in a somatic tissue culture of Sinningia speciosa (Lodd.) Hiern. Agronomy, 10, 1783. (DOI 10.3390/agronomy10111783)

Chen, Y., Zhang, Y., Cheng, Q., Niu, M., Liang, H., Yan, H., Zhang, X., Teixeira da Silva, J.A., & Ma, G. (2016). Plant regeneration via direct and callus-mediated organogenesis from leaf explants of Chirita swinglei (Merr.) W.T. Wang. In Vitro Cellular & Developmental Biology – Plant, 52, 521–529.

Chory, J., Reinecke, D., Sim, S., Washburn, T., & Brenner, M. (1994). A role for cytokinins in de-etiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiology, 104, 339–347.

Chotthong, B., Kaeojunla, W., Tanawat, T., & Klung-ngoen, W. (2019). Progress on Biodiversity Management in Thailand. Retrieved July 24, 2021, from https://www.th.undp.org/content/thailand/en/home/library/ environment_energy/Progres-on-biodiversity-management-in-Thailand.html

Emer, A.A., Winhelmann, M.C., Grzeça, G.T., Fior, C.S., & Schafer, G. (2018). In vitro multiplication of Codonanthe devosiana. Ornamental Horticulture, 24(1), 58–62.

Fuadi, M., Mohamed, M.T.M., Salleh, N.S., Anwar, M.P., Awang, Y., & Fauz, R.M. (2014). Effect of different concentrations of benzyladenine and frequency of watering on growth and quality of Dracaena sanderiana and Codiaeum variegatum. Journal of Environmental Biology, 35, 1047–1052.

George, F.E., Hall, A.M., & De Klerk, J.G. (2008). Plant Propagation by Tissue Culture - Volume 1: The Background (3rd Edition). Dordrecht: Springer.

Godo, T., Lu, Y., & Mill, M. (2010). Micropropagation of Lysionotus pauciflorus Maxim. (Gesneriaceae). In S.M. Jain, & S.J. Ochatt. (Eds.), Protocols for In Vitro Propagation of Ornamental Plants. (pp. 127–139). New York: Humana Press.

Herath, H.M.I. (2013). In vitro propagation of Chirita moonii Gardn. (Gesneriaceae), a potential ornamental plant endemic to Sri Lanka. Journal of Horticultural Science & Biotechnology, 88(5), 638–642.

Irshad, M., Rizwan, H. M., Debnath, B., Anwar, M., Li, M., Liu, S, He, B., & Qiu, D. (2018). Ascorbic acid controls lethal browning and Pluronic F-68 promotes high-frequency multiple shoot regeneration from cotyldonary node explant of Okra (Abelmoschus esculentus L.). HortScience, 53(2), 183–190.

Khan, S., Naseeb, S, & Ali, K. (2007). Callus induction, plant regeneration and acclimatization of African violet (Saintpaulia ionantha) using leaves as explants. Pakistan Journal of Botany, 39(4), 1263–1268.

Li, Q., Deng, M., Zhang, J., Zhao, W., Song, Y., Li, Q., & Huang, Q. (2013). Shoot organogenesis and plant regeneration from leaf explants of Lysionotus serratus D. Don. The Scientific World Journal, 280384. (DOI 10.1155/2013/280384)

Ma, G.H., He, C.X., Ren, H., Zhang, Q.M., Li, S.J., Zhang, X.H., & Eric, B. (2010). Direct somatic embryogenesis and shoot organogenesis from leaf explants of Primulina tabacum. Biologia Plantarum, 54(2), 361–365.

Ma, G.H., Teixeira da Silva, J.A., Lu, J., Zhang, X., & Zhao, J. (2011). Shoot organogenesis and plant regeneration in Metabriggsia ovalifolia. Plant Cell, Tissue & Organ Culture, 105, 355–361.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.

Mycock, D.J., Watt, M.P., Hannweg, K.F., Naicker, K., Makwarela, M., & Berjak, P. (December). Somatic embryogenesis of two indigenous South African Haworthia spp. (H. limifolia and H. koelmaniorum). South African Journal of Botany, 63(6), 345–350.

Ouyang, Y., Chen, Y., Lü, J., Teixeira da Silva, J.A., Zhang, X., & Ma, G. (2016). Somatic embryogenesis and enhanced shoot organogenesis in Metabriggsia ovalifolia W.T. Wang. Scientific Reports, 6, 24662. (DOI 10.1038/srep24662)

Padmanabhan, P., Murch, S.J., Sullivan, J.A., & Saxena, P. (2014). Development of an efficient protocol for high frequency in vitro regeneration of a horticultural plant Primulina tamiana (B.L. Burtt) Mich. Möller & A. Webber. Canadian Journal of Plant Science, 94(7), 1281–1287.

Pang, J.L., Wang, L.L., Hu, J.Q., Xiang, T.H., & Liang, H.M. (2006). Synergistic promotion of gibberellin and cytokinin on direct regeneration of floral buds from in vitro cultures of sepal segments in Sinningia speciosa hiern. In Vitro Cellular & Developmental Biology – Plant, 42, 450–454.

Park, E.H., Bae, H., Park, W.T., Kim, Y.B., Chae, S.C., & Park, S.U. (2012). Improved shoot organogenesis of gloxinia (Sinningia speciosa) using silver nitrate and putrescine treatment. Plant Omics Journal, 5(1), 6–9.

Prameela, J., Ramakrishnaiah, H., Krishna, V., Deepalakshmi, A.P., Kumar, N.N., & Radhika, R.N. (2015). Micropropagation and assessment of genetic fidelity of Henckelia incana: an endemic and medicinal Gesneriad of south India. Physiology & Molecular Biology of Plants, 21, 441–446.

Puglisi, C., & Middleton, J.D. (2017). A revision of Dorcoceras (Gesneriaceae) in Thailand. Thai Forest Bulletin (Botany), 45(1), 10–17.

Sunpui, W., & Kanchanapoom, K. (2002). Plant regeneration from petiole and leaf of African violet (Saintpaulia ionantha Wendl.) cultured in vitro. Songklanakarin Journal of Science & Technology, 24(3), 357–364.

Takagi, H., Sugawara, S., Saito, T., Tasaki, H., Yuanxue, L., Kaiyun, G., Han, D.S., Godo, T., & Nakano, M. (2011). Plant regeneration via direct and indirect adventitious shoot formation and chromosome-doubled somaclonal variation in Titanotrichum oldhamii (Hemsl.) Solereder. Plant Biotechnology Reports, 5,187–195.

Tang, Z., Lin, H., Shi, L., & Chen, W. (2007). Rapid in vitro multiplication of Chirita longgangensis W.T. Wang: an endemic and endangered Gesneriaceae species in China. HortScience, 42(3), 638–641.

Thomas, T.D. (2008). The role of activated charcoal in plant tissue culture. Biotechnology Advances, 26(6), 618–631.

Thomas, T.H. (1982). Plant Growth Regulator Potential and Practice. Croydon: British Crop Protection Council.

Vanneste, S., & Friml, J. (2009) Auxin: a trigger for change in plant development. Cell, 136(6), 1005–1016.

Wang, D., Li, X., Cheng, Z., & Long, C. (2018). In vitro preservation and micropropagation of Oreocharis mileense (W.T. Wang) M. Möller & A. Weber (Gesneriaceae) through shoot organogenesis. In Vitro Cellular & Developmental Biology – Plant, 54, 606–611.

Wernicke, W., Grost, J., & Molkovits, L. (1986). The ambiguous role of 2,4-dichlorophenoxyacetic acid in wheat tissue culture. Physiologia Plantarum, 68(4), 597–602.

Yamaguchi, T., Nukazuka, A., & Tsukaya, H. (2012). Leaf adaxial–abaxial polarity specification and lamina outgrowth: evolution and development. Plant & Cell Physiology, 53(7), 1180–1194.

Yang, G., Lü, J., Teixeira da Silva, J., Chen, H., & Ma, G. (2014). Shoot organogenesis from leaf explants of Dayaoshania cotinifolia W.T. Wang. In Vitro Cellular & Developmental Biology – Plant, 50, 451–457.

Yang, X., Lü, J., Teixeira da Silva, J.A., & Ma, G. (2012). Somatic embryogenesis and shoot organogenesis from leaf explants of Primulina tabacum. Plant Cell, Tissue & Organ Culture, 109, 213–221.

Downloads

Published

2022-12-07