ผลของสารห่อหุ้มเซลล์ที่ต่างกันต่อการเหลือรอดของ Lactobacillus plantarum และคุณภาพของผลิตภัณฑ์ไอศกรีมซอร์เบทมะม่วง
Effect of Different Coating Materials on the Survival of Lactobacillus plantarum and Quality of Mango Sorbet
Keywords:
การห่อหุ้ม , โพรไบโอติก , ฟรุคโตโอลิโกแซคคาไรด์ , ไคโตซาน , ไอศกรีมซอร์เบท, encapsulation, probiotic, fructooligosaccharide, chitosan, sorbetAbstract
งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาผลของสารห่อหุ้มเซลล์ที่ต่างกัน (เซลล์อิสระ, อัลจิเนต,อัลจิเนต-ฟรุคโตโอลิโก แซคคาไรด์, อัลจิเนต-ไคโตซาน และอัลจิเนต-ฟรุคโตโอลิโกแซคคาไรด์-ไคโตซาน) ต่อร้อยละผลผลิตของเซลล์หลังการห่อหุ้ม ขนาดของเม็ดเจลโพรไบโอติก การรอดชีวิตของ Lactobacillus plantarum ในสภาวะเลียนแบบระบบย่อยอาหาร และ การป้องกันการซึมผ่านของกรดแกลลิกเข้าไปในเม็ดเจลโพรไบโอติก นอกจากนี้ยังศึกษาคุณภาพของไอศกรีมซอร์เบทมะม่วง ที่เติม L. plantarum (เซลล์ที่ถูกห่อหุ้มเป็นเม็ดเจล หรือเซลล์อิสระ) และการรอดชีวิตของ L. plantarum ในไอศกรีมซอร์เบท มะม่วงที่เก็บรักษาเป็นเวลา 5 สัปดาห์ที่ -18±2 °ซ ผลการวิจัยพบว่าการเติมฟรุคโตโอลิโกแซคคาไรด์ในกระบวนการห่อหุ้มเซลล์ทำให้ขนาดเม็ดเจลอัลจิเนตใหญ่ขึ้น จาก 2.91 เป็น 3.11 มิลลิเมตร (p<0.05) การใช้ร่วมกันระหว่างการเติมฟรุคโตโอลิโก แซคคาไรด์ในเม็ดเจลอัลจิเนตและการเคลือบด้วยไคโตซานมีผลทำให้ L. plantarum รอดชีวิตในสภาวะเลียนแบบระบบย่อยอาหารสูงที่สุด (p<0.05) นอกจากนี้ การเคลือบเม็ดเจลอัลจิเนตด้วยไคโตซานช่วยป้องกันการซึมผ่านของกรดแกลลิกเข้าไปใน เม็ดเจลได้ดีกว่าทุกกลุ่มการทดลอง การเติมเม็ดเจลโพรไบโอติกทุกกลุ่มการทดลองมีผลทำให้อัตราการละลายของไอศกรีมซอร์ เบทมะม่วงเพิ่มขึ้นซึ่งมีผลทำให้คะแนนการยอมรับด้านเนื้อสัมผัสและความโดยรวมของไอศกรีมลดลงเมื่อเทียบกับกลุ่มที่เติมเซลล์อิสระ (p<0.05) นอกจากนี้การเคลือบเม็ดเจลอัลจิเนตด้วยไคโตซานมีผลทำให้การรอดชีวิตของ L. plantarum มากขึ้นในไอศกรีมซอร์เบทมะม่วงระหว่างการเก็บรักษาที่ -18±2 °ซ โดยสรุปการใช้ร่วมกันระหว่างการเติมฟรุคโตโอลิโกแซคคาไรด์ ในเม็ดเจลอัลจิเนตและการเคลือบด้วยไคโตซานมีการสูญเสียของ L. plantarum ทั้งหมดต่ำสุดตั้งแต่การห่อหุ้มเซลล์จนถึงสภาวะเลียนแบบระบบย่อยอาหาร The objectives of this research were to study the effect of different encapsulation materials (free cell, alginate, alginate-fructooligosaccharide, alginate-chitosan, and alginate-fructooligosaccharide-chitosan) on encapsulation yield, size of probiotic beads, the survival of encapsulated probiotic Lactobacillus plantarum in simulated gastrointestinal conditions, and protection of probiotic beads from gallic acid. The qualities of mango sorbet fortified with L. plantarum (encapsulated or free cells) and viability of L. plantarum in mango sorbet during 5 weeks storage at -18±2°C were evaluated. The research results showed that the addition of fructo-oligosaccharide during microencapsulation of L. plantarum increased the size of the alginate beads from 2.91 to 3.11 millimeter (p<0.05). The beads of alginate with fructooligosaccharide and chitosan coating showed the highest survival of L. plantarum in simulated gastrointestinal conditions (p<0.05). In addition, the chitosan coating of alginate beads gave better protection of the penetration of a gallic acid within the beads than all types of beads. The addition of all types of beads significantly increased the melting rate of mango sorbet whereas the texture, and overall scores of mango sorbet decreased compared to free cells (p<0.05). Furthermore, the chitosan coating of alginate beads provided better L. plantarum survival in mango sorbet during storage at -18±2 °C. Conclusively, the beads of alginate with fructooligosaccharide and chitosan coating showed the lowest losses of the counts of total L. plantarum from the encapsulation to simulated gastrointestinal conditions.References
Akalin, A. S. & Erisir, D. (2008). Effect of inulin and oligofructose on the rheological characteristics and probiotic culture survival in low-fat probiotic ice cream. Journal of Food Science, 73(4), 184-188.
Akin, M. B., Akin, M. S. & Kirmaci, Z. (2007). Effects of inulin and sugar levels on the viability of yogurt and probiotic bacteria and the physical and sensory characteristics in probiotic ice cream. Food Chemistry, 104(1), 93-99.
Bacteriological Analytical Manual. (2002). Chapter 4 Enumeration of Escherichia coli and the coliform bacteria. Retrieved May 1, 2015, from https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4.
Champagne, C. P. (2009). Prebiotics and probiotics science and technology. (1). New York : Springer.
Chandramouli, V., Kailasapathy, K., Peiris, P., & Jones, M. (2004). An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. Journal of Microbiological Methods, 56(1), 27–35.
Chavarri, M., Maranon, I., Ares, R., Ibanez, F. C., Marzo, F., & Villaran, M. d. C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142(1–2), 185–189.
Chen, K.-N., Chen, M.-J., Liu, J.-R., Lin, C.-W., & Chiu, H.-Y. (2005). Optimization of incorporated prebiotics as coating materials for probiotic microencapsulation. Journal of Food Science, 70(5), 260–266.
Chaiyasut, C. (2013). Probiotic alternative microorganism for health. (1). Nonthaburi : Department of Thai traditional and alternative medicine, Ministry of public health. (in Thai)
FAO/WHO. (2006). Probiotics in food, health and nutritional properties and guidelines for evaluation. (85) Rome : Food and Agriculture Organization of the United Nations.
Farias, T. G. S. de, Ladislau, H. F. L., Stamford, T. C. M., Costa Medeiros, J. A., Mendonca Soares, B. L., Stamford Arnaud, T. M., & Stamford, T. L. M. (2019). Viabilities of Lactobacillus rhamnosus ASCC 290 and Lactobacillus casei ATCC 334 (in free form or encapsulated with calcium alginate-chitosan) in yellow mombin ice cream. LWT - Food Science and Technology, 100, 391-396.
Gandomi, H., Abbaszadeh, S., Misaghi, A., Bokaie, S., & Noori, N. (2016). Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT - Food Science and Technology, 69, 365–371.
Goff, H. D., & Hartel, R. W. (2013). Ice cream. (7). New York : Springer.
Heller, K. J. (2001). Probiotic bacteria in fermented foods: product characteristics and starter organisms. The American Journal of Clinical Nutrition, 73(2), 374–379.
Homayouni, A., Azizi, A., Javadi, M., Mahdipour, S., & Ejtahed, H. (2012). Factors influencing probiotic survival in ice cream: A review. International Journal of Dairy Science, 7(1), 1–10.
Iyer, C., & Kailasapathy, K. (2005). Effect of co-encapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria under in vitro acidic and bile salt conditions and in yogurt. Journal of Food Science, 70(1), 18-23.
Kaminska-Dworznicka, A., Matusiak, M., Samborska, K., Witrowa-Rajchert, D., Gondek, E., Jakubczyk, E., & Antczak, A. (2015). The influence of kappa carrageenan and its hydrolysates on the recrystallization process in sorbet. Journal of Food Engineering, 167,162–165.
Kandylis, P., Pissaridi, K., Bekatorou, A., Kanellaki, M., & Koutinas, A. A. (2016). Dairy and non-dairy probiotic beverages. Current Opinion in Food Science, 7, 58–63.
Krasaekoopt, W. & Watcharapoka, S. (2014). Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. Food Science and Technology, 57, 761-766.
Koo, S. M., Cho, Y. H., Huh, C. S., Baek, Y. J., & Park, J. (2001). Improvement of the stability of Lactobacillus casei YIT 9018 by microencapsulation using alginate and chitosan. Journal of Microbiology and Biotechnology, 11, 376–383.
Mantzourani, I., Kazakos, S., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., Bekatorou, A., & Plessas, S. (2019). Potential of the probiotic Lactobacillus Plantarum ATCC 14917 strain to produce functional fermented pomegranate juice. Foods, 8(1), 4.
Nualkaekul, S., Cook, M. T., Khutoryanskiy, V. V., & Charalampopoulos, D. (2013). Influence of encapsulation and coating materials on the survival of Lactobacillus plantarum and Bifidobacterium longum in fruit juices. Food Research International, 53(1), 304–311.
Pupaka, D. (2015). The evaluation of phytochemical content, antioxidant activity and total phenolic content of the native mango in Chachoengsao province. KKU Science Journal, 43(2), 267-283. (in Thai)
Serrano-Casas, V., Perez-Chabela, M. L., Cortes-Barberena, E., & Totosaus, A. (2017). Improvement of latic acid bacteria viability in acid conditions employing agroindustrial co-products as prebiotic on alginate ionotropic gel matrix co-encapsulation. Journal of Functional Foods, 38, 293-297.
Silva, C. M., Ribeiro, A. J., Figueiredo, M., Ferreira, D., & Veiga, F. (2005). Microencapsulation of hemoglobin in chitosan-coated alginate microspheres prepared by emulsification/internal gelation. The AAPS Journal, 7, 903–913.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, (299), 152–178.
Tharanathan, R. N., Yashoda, H. M., & Prabha, T. N. (2006). Mango (Mangifera indicaL.), “The King of fruits” —An overview. Food Reviews International, 22(2), 95–123.