การผลิตเซลลูโลสนาโนไฟเบอร์จากเปลือกปอคิวบาด้วยกระบวนการไมโครฟลูอิไดเซชัน

Production of Cellulose Nanofiber from Kenaf (Hibiscus cannabinusL.) Bark by Microfluidization

Authors

  • กรณัฏฐ์ นาคภิบาล
  • สมทบ สันติเบ็ญจกุล
  • กนกพร เกาะมั่น
  • รัชดา ไชยเจริญ

Keywords:

เซลลูโลสนาโนไฟเบอร์ , ปอคิวบา, ไฮโดรเทอร์มอล , ไมโครฟลูอิไดเซชัน, cellulose nanofiber , kenaf, hydrothermal, microfluidization

Abstract

งานวิจัยนี้ศึกษาการผลิตเซลลูโลสนาโนไฟเบอร์จากเปลือกปอคิวบาด้วยกระบวนการไมโครฟลูอิไดเซชัน และศึกษาคุณลักษณะของเส้นใยในแต่ละขั้นตอนของการสกัด รวมถึงเส้นใยเซลลูโลสนาโนไฟเบอร์ที่ผลิตได้ ได้แก่องค์ประกอบทางเคมี วิเคราะห์ลักษณะโครงสร้างพื้นผิวของเส้นใยด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM) วิเคราะห์ลักษณะเส้นใย ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM) และกล้องจุลทรรศน์แรงอะตอม (AFM) รวมถึงวิเคราะห์หมู่ฟังก์ชันของเส้นใยด้วยเทคนิคฟูเรียร์ทรานสฟอร์มอินฟราเรดสเปกโทรสโกปี (FTIR) วิเคราะห์ความเป็นผลึกของเส้นใยด้วยเทคนิคเอกซ์เรย์ ดิฟแฟรกชัน (XRD) และวิเคราะห์คุณสมบัติทางความร้อนของเส้นใยด้วยเทคนิคเทอร์โมแกรวิเมทริก (TGA) ตามลำดับ จากผลการทดลองพบว่า การวิเคราะห์องค์ประกอบทางเคมีและ FTIR แสดงให้เห็นถึงการกำจัดเฮมิเซลลูโลสและลิกนินระหว่างกระบวนการสกัดเซลลูโลส และสามารถสกัดเซลลูโลสปริมาณสูงได้จากเปลือกปอคิวบาที่ผ่านการปรับสภาพในแต่ละขั้นตอน และการวิเคราะห์ด้วย SEM ยังแสดงให้เห็นถึงพื้นผิวของเส้นใยที่ถูกทำลายอย่างชัดเจน ส่วนการวิเคราะห์ด้วย TEM และ AFM แสดงการลดขนาดลงของเส้นใยซึ่งอยู่ในระดับนาโนเมตรและขนาดของเส้นใยเซลลูโลสนาโนไฟเบอร์ที่ผลิตได้อยู่ในช่วง 2-6 นาโนเมตร การวิเคราะห์ด้วยเทคนิค XRD พบว่าในแต่ละขั้นตอนของการสกัดสามารถเพิ่มความเป็นผลึกของเส้นใย และไม่ส่งผลต่อการเปลี่ยนแปลงโครงสร้างผลึกของเซลลูโลส นอกจากนี้การวิเคราะห์ด้วยเทคนิค TGA พบว่าเส้นใยเซลลูโลสนาโนไฟเบอร์มีความเสถียรทางความร้อนสูงกว่าเส้นใยเซลลูโลสเริ่มต้น จากผลการทดลองดังกล่าวแสดงให้เห็นว่ากระบวนการปรับสภาพและกระบวนการไมโครฟลูอิไดเซชันที่ใช้ สามารถผลิตเซลลูโลสนาโนไฟเบอร์ที่มีคุณลักษณะที่ดีเหมาะแก่การประยุกต์ใช้ต่อไป อีกทั้งกระบวนการที่ใช้ในการผลิตเซลลูโลสนาโนไฟเบอร์นั้น ยังเป็นกระบวนการที่เป็นมิตรต่อสิ่งแวดล้อมอีกด้วย The purposes of this research were to study the production of cellulose nanofiber (CNF) from kenaf bark (KB) by microfluidization and to investigate the properties of kenaf fibers with each treatment stage and the final CNF. The fibers were characterized by chemical analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscope (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The results showed that chemical analysis and FTIR revealed the removal of hemicelluloses and lignin during cellulose extraction processing and the high cellulose content was extracted from kenaf bark with each pretreatment stage. The SEM analysis also clearly showed the fibers surface was destroyed. The characterization of fibers investigated by TEM and AFM indicated that the fiber diameters decreased to a nanometer scale and the final CNF size was from 2 to 6 nm. The result analyzed by XRD showed that each treatment stage increased the crystallinity of the fibers and the extraction processing did not affect the crystalline structure of the cellulose. Moreover, TGA analysis indicated that CNF has higher thermal stability than the raw cellulose fibers. These results showed that the pretreatment and the microfluidization methods can produce CNF which is the good properties for further applications and these processes are also the environmental-friendly methods.

References

Abdul Khalil, H. P. S., Bhat, A. H., & Ireana Yusra, A. F. (2012). Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers, 87(2), 963-979.

Adaganti, A. Y., Basavaraj, M. K., Desai, G. P., & Shivappa, S. (2014). Effect of hydrothermal explosion pretreatment on the composition and structure of Calliandra calothyrsusshrub -a lignocellulosic biomass. International Journal of Renewable and Sustainable Energy, 3(1), 1-5.

Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29(6), 675-685.

Akil, H.M., Omar, M.F., Mazuki, A. A. M., Safiee, S. M., Ishak, Z. A. M., & Abu Bakar, A. (2011). Kenaf fiber reinforced composites: A review. Material & Design, 32, 4107-4121.

Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557-565.

Ashori, A., Harun, J., Zin, W.M., & Nor, M. (2006). Enhancing dry-strength propertiesof kenaf (Hibiscus cannabinus) paper through chitosan. Polymer-Plastic Technology and Engineering, 45, 125-129.

Chirayil, C. J., Joy, J., Mathew, L., Mozetic, M., & Thomas, S. (2014). Isolation and characterization of cellulose nanofibrils from Helicteres isora Plant. Industrial Crops and Products, 59, 27-34.

Huang, X., Cornelis, F., De, H., Feng, L., Jiulong, X., Chung-Yun, H., Jinqiu, Q., Yongze, J., & Yuzhu, C. (2017). Dilute Alkali and Hydrogen Peroxide Treatment of Microwave Liquefied Rape Straw Residue for the Extraction of Cellulose Nanocrystals. Journal of Nanomaterials, 2017, 1-9.

Huang, D., Haoqun, H., Weilong, H., Haiyan, Z., & Xiaobin, H. (2021). Scalable Preparation of Cellulose Nanofibers from Office Waste Paper by an Environment-Friendly Method. Polymers, 13, 3119-3135.

Jan, E.G. (2009). Environmental benefits of natural fibre production and use. Proceedings of the Symposium on Natural Fibres. 56, 3-17.

Janardhnan, S., & Sain, M. (2006). Isolation of cellulose microfibrils – an enzymatic approach. BioResources. 1, 176 -188.

Jaouadi, M., Msahli, S., & Sakli, F. (2015). Physical and mechanical properties of nonwoven based on kenaf fibers. In 5 th International Istanbul Textile Congress 2015: Innovative Technologies “Inspire to Innovate”. (pp 1- 4). Turkey: Istanbul.

Jiang, Y., Xiuyu, L., Qiang, Y., Xueping, S., Chengrong, Q., Shuangfei, W., & Kecheng, L. (2019). Effects of residual lignin on composition, structure and properties of mechanically defibrillated cellulose fibrils and films. Cellulose,26, 1577-1593.

Karimi, S., Tahir, P. M., Dufresne, A., Karimiand, A., & Abdulkhani, A. (2014). Kenaf bast cellulosic fibers hierarchy: A comprehensive approach from micro to nano. Carbohydrate Polymers,101, 878-885.

Kumar, R., Hu, F., Hubbell, C. A., Ragauskas, A. J. & Wyman, C. E. (2013). Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresource Technology, 130, 372-381.

Liu, Q., Lu, Y., Aguedo, M., Jacquet, N., Ouyang, C., He, W., Yan, C., Bai, W., Guo, R., Goffin, D., Song, J., & Richel, A. (2017). Isolation of high- purity cellulose nanofibers from wheat straw through the combined environmentally friendly methods of steam explosion, microwave- assisted hydrolysis, and microfluidization. ACS Sustainable Chemistry & Engineering,5(7), 6183-6191.

Mateo, S., Silvia, P., Francisca, M.-G., M, D. L. R., & Alberto, J. M. (2021). Nanocellulose from agricultural wastes: products and applications - A Review. Processes, 9, 1594-1616.

Nayeri, M. D., Paridah, M. T., Jalaluddin, H., Luqman, C. A., Edi, S.B., & Mohammad, J. (2013). Effects of temperature and time on the morphology, pH, and buffering capacity of bast and core kenaf fibres. Bioresources, 8(2), 1801-1812.

Narkpiban, K., Sakdraronnarong, C., Nimchua, T., Pinmaree, P., Thongkred, P., & Poonsawat, T. (2019). The effect of mechano- enzymatic treatment on the characteristics of cellulose nanofiber obtained from kenaf (Hibiscus cannabinus L.) bark. Bioresources,14(1), 99-119.

Oyekanmi, A. A., Saharudin, N. I., Che Mohamad, H., Abdul Khalil, H. P. S., Olaiya, N. G., Abdullah, C. K., Alfatah, T., Gopakumar, D. A., & Pasquini, D. (2021). Improved Hydrophobicity of Macroalgae Biopolymer Film Incorporated with Kenaf Derived CNF Using Silane Coupling Agent. Molecules. 26(8), 2254-2269.

Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., österberg, M., Ruokolainen, J., Laine, L., Larsson, P. T., Illala, O., & Linsström, T. (2007). Enzymatic hydrolysis combined with mechanical shearing and highpressure homogemization for nanoscale cellulose fibrils and strong gels. Biomacromolecules. 8, 1934- 1941.

Pang, C., Shanks, R. A., & Daver, F. (2015). Characterization of kenaf fibre composites prepared with tributyl citrate plasticized cellulose acetate. Composites Part A: Applied Science and Manufacturing, 70, 52-58.

Radakisnin, R., Mohd, S. A. M., Mohd, R. M. J., Mohammad, J., Mohamed, T. H. S., & Mohd, F. M. T. (2020). Structural, morphological and thermal properties of cellulose nanofibers from napier fiber (Pennisetum purpureum). Materials, 13, 4125-4142.

Roman, M., & Winter, W.T. (2004). Effect of sulfate Groups from Sulfuric Acid Hydrolysis on the Thermal Degradation Behavior of Bacterial Cellulose. Biomacromolecules, 5(5), 1671-1677.

Saelee, K., Yingkamhaeng, N., Nimchua, T., & Sukyai, P. (2016). An environmentally friendly xylanase-assisted pretreatment for cellulose nanofibrils isolation from sugarcane bagasse by high-pressure homogenization. Industrial Crops and Products, 82, 149 - 160.

Segal, L., Creely, J. J., Martin, A.E., & Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786-794.

Sharma, A., Mandal, T., & Goswami, S. (2018). Cellulose nanofibers from rice straw: Process development for improved delignification and better crystallinity index. Trends In Carbohydrate Research, 9(4),1-12.

Suhdi, S., & Wang, S.-C. (2021). The Production of Carbon Nanofiber on Rubber Fruit Shell-Derived Activated Carbon by Chemical Activation and Hydrothermal Process with Low Temperature. Nanomaterials, 11(8), 2038-2051.

Van Soest, P. J. (1963). Use detergents in the analysis of fibrous feeds II. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemistry, 46(5), 829-835.

Wang, J., Xusheng, L., Jianxiao, S., Kunze, W., Yichun, X., Yiting, W., & Shuangfei, W. (2020). Direct Preparation of Cellulose Nanofibers from Bamboo by Nitric Acid and Hydrogen Peroxide Enables Fibrillation via a Cooperative Mechanism. Nanomaterials, 10(5), 943-955.

Xiao, L. P., Sun, Z. J., Shi, Z. J., Xu, F., & Sun, R.C. (2011). Impact of hot compressed water pretreatment on the structural changes of woody biomass for bioethanol production. Bioresources, 6(2), 1576-1598.

Yang, W., Feng, Y., He, H., & Yang, Z. (2018). Environmentally-Friendly Extraction of Cellulose Nanofibers from Steam-Explosion Pretreated Sugar Beet Pulp. Materials.11(7), 1160-1171.

Zeng, J., Zhanting, Z., Zheng, C., Yu, W., Xiaojun, W., Bin, W., & Wenhua, G. (2021). Cellulose nanofbrils manufactured by various methods with application as paper strength additives. Scientific Reports, 11, 11918-11934.

Zhang, X., Han, G., Jiang, W., Zhang, Y., Li, X., & Li, M. (2016). Effect of steam pressure on chemical and structural properties of kenaf fibers during steam explosion process. BioResources, 11(3), 6590-6599.

Downloads

Published

2022-12-07