เทคโนโลยีอวกาศเพื่อคาดการณ์อุบัติการณ์ของโรคสครับไทฟัสใน อำเภอแม่ฟ้าหลวง จังหวัดเชียงราย

Space Technology for Prediction of Scrub Typhus Incidence in Mae Fa Luang District, Chiang Rai Province

Authors

  • พิมพกานต์ บุญสวัสดิ์
  • พลภัทร เหมวรรณ
  • อริศรา เจริญปัญญาเนตร

Keywords:

สครับไทฟัส , เทคนิคทางภูมิสารสนเทศ , การวิเคราะห์เชิงพื้นที่ , สถิติเชิงพื้นที่ , Landsat-8 OLT, scrub typhus , geo-information techniques , spatial analysis , spatial statistics

Abstract

การศึกษาครั้งนี้มีวัตถุประสงค์ 2 ประการ ได้แก่ 1) เพื่อวิเคราะห์รูปแบบการกระจายตัว และความหนาแน่นของโรคสครับไทฟัส ในอำเภอแม่ฟ้าหลวง จังหวัดเชียงราย และ 2) เพื่อสร้างแบบจำลองคาดการณ์อุบัติการณ์ของโรคสครับไทฟัส โดยข้อมูลผู้ป่วยโรคสครับไทฟัสในอำเภอแม่ฟ้าหลวงช่วงเดือนธันวาคม พ.ศ. 2561ได้ถูกนำมาวิเคราะห์รูปแบบการกระจายตัว ด้วยดัชนีเพื่อนบ้านข้างเคียงใกล้ที่สุด (Nearest Neighbor Index) และการวิเคราะห์ความหนาแน่นใช้เทคนิคการคาดประมาณ ความหนาแน่นเชิงพื้นที่แบบเคอร์เนล (Kernel Density Estimation) ในส่วนของการสร้างแบบจำลองดำเนินการโดยใช้ภาพถ่ายดาวเทียม Landsat-8OLT ตรวจหาปัจจัยทางกายภาพได้แก่ ดัชนีผลต่างพืชพรรณแบบนอมัลไลซ์ (NDVI) ดัชนีผลต่างความชื้น แบบนอมัล ไลซ์ (NDWI) อุณหภูมิ ความสูงของภูมิประเทศ และการใช้ประโยชน์ที่ดิน จากนั้นปัจจัยเหล่านี้ถูกนำไปวิเคราะห์ ร่วมกับอุบัติการณ์โรคสครับไทฟัสด้วยสัมประสิทธิ์สหสัมพันธ์ เพื่อสร้างแบบจำลองคาดการณ์อุบัติการณ์ของโรคสครับไทฟัส ผลการศึกษาพบว่าอุบัติการณ์ของโรคสครับไทฟัสพบพื้นที่ระบาดทางตอนเหนือของอำเภอแม่ฟ้าหลวงและการระบาดลดลงเมื่อบริเวณใกล้ตัวเมืองเชียงราย และพบการกระจายตัวในเดือนมกราคมถึงเดือนพฤษภาคมเป็นแบบสุ่ม ทั้งนี้ ความรุนแรงของโรคจะเพิ่มขึ้นและขยายวงกว้างมากขึ้นในเดือนมิถุนายนถึงเดือนธันวาคม เนื่องจากมีรูปแบบรวมกลุ่ม อุบัติการณ์มีความคล้ายคลึงกันโดยความรุนแรงของโรคจะมากที่สุดในฤดูฝน รองลงมา คือ ฤดูหนาว และฤดูร้อน ตามลำดับ โดยพื้นที่วิกฤตของโรคพบบริเวณบ้านเทอดไทย บ้านหินแตก บ้านห้วยอื้น และบ้านเทอดไทยหนึ่ง ตามลำดับ นอกจากนี้ แบบจำลองคาดการณ์อุบัติการณ์ของโรคสครับไทฟัส พบว่าปัจจัยที่ส่งผลต่อโรค คือ NDVI ระหว่าง 0.5-0.6 NDWI ระหว่าง (-0.7)-(-0.5) อุณหภูมิระหว่าง 20–26 °C และ ความสูง 400-1000 เมตรจากระดับทะเลปานกลาง โดยแบบจำลองมีค่าสัมประสิทธิ์ การตัดสินใจ (R2) เท่ากับ 0.761   The purposes of this study were: 1) to analyze distribution pattern and density of scrub typhus in Mae Fah Luang District, Chiang Rai Province. 2) to create of regression model for predicting the incidence of scrub typhus during December 2018. This paper discusses point pattern analysis of cases using the Average Nearest Neighbor Index and Kernel Density Estimation. The modeling section was performed using Landsat-8 OLT satellite imagery. The physical factors were determined, including NDVI, NDWI, temperature, height and land use. These factors were then analyzed by Pearson's correlation coefficient. The data of physical factors was used to the independent variable to create the Prediction of Scrub Typhus Incidence model. The results showed Scrub Typhus Incidence are scattered in many areas of Mae Fah Luang District. Most of the outbreak areas were in the northern of Mae Fah Luang District and decreased as they approached Mueang Chiang Rai District. Scrub Typhus are most in Rural area because community in Mae Fah Luang District, adjacent to the edge of the forest resulting in an outbreak near the village. In addition, distribution is random pattern in January-May and clustered patternin June-December. The incidences were distributed and the severity of the disease increased in June- December, the highest in rainy, winter. and summer respectively. The critical areas from the density analysis were at Ban Thoet Thai, Ban Hin Taek, Ban Huai Eun and Ban Thoet Thai Nueng, respectively. In particular, The regression model had relationship with NDVI (0.5 - 0.6), NDWI (-0.7)-(-0.5), temperature 20 – 26 °C, hight of 400 – 1000 meters MSL and R2 of 0.761.

References

Administrative Committee Provincial administration in Chiang Rai province. (2014). Chiang Rai provincial development planning 2014-2017. Retrieved 2018 Jan 20, from http://www.pdc.go.th/wp/content/uploads/2015/11/แผนพัฒนาจังหวัดเชียงราย57_60_ฉบับทบทวน.pdf (in Thai)

Bonell, A., Lubell, Y., Newton, P. N., Crump, J. A., & Paris, D. H. (2017). Estimating the burden of scrub typhus: A systematic review. PLoS neglected tropical diseases, 11(9), e0005838.

Chaisiri, K.; Cosson, J.-F., Morand, S. (2017). Infection of Rodents by Orientia tsutsugamushi, the Agent of Scrub Typhus in Relation to Land Use in Thailand. Tropical Medicine Infectious Disease, 2(4), 53.

Cohen, J., Cohen, P., West, S. G., and Aiken, L. S. (2013). Applied multiple regression/ correlation analysis for the behavioral sciences. New York: Routledge.

Desktop ESRI ArcGIS. (2014). NDVI function. Retrieved 2018 Jan 30, from http://desktop.arcgis.com/en/arcmap/ 10.3/manage-data/raster-and-images/ndvi-function.html

Ferguson, G.A. (1981). Statistical analysis in psychology and education. 5th ed. New York: McGraw-Hill.

Gibin, M., Longley, P., Atkinson, P. (2007). Kernel density estimation and percent volume contours in general practice catchment area analysis in urban areas. In The Proceedings of GISRUK.: 11-3.

Jin, H. S., Chu, C., & Han, D. Y. (2013). Spatial distribution analysis of scrub typhus in Korea. Osong public health and research perspectives, 4(1), 4-15.

Kuo, C. C., Huang, J. L., Ko, C. Y., Lee, P. F., & Wang, H. C. (2011). Spatial analysis of scrub typhus infection and its association with environmental and socioeconomic factors in Taiwan. Acta tropica, 120(1-2), 52-58.

Kuo, C. C., Wardrop, N., Chang, C. T., Wang, H. C., & Atkinson, P. M. (2017). Significance of major international seaports in the distribution of murine typhus in Taiwan. PLoS neglected tropical diseases, 11(3), e0005430.

Kwak, J., Kim, S., Kim, G., Singh, V. P., Hong, S., & Kim, H. S. (2015). Scrub typhus incidence modeling with meteorological factors in South Korea. International journal of environmental research and public health, 12(7), 7254-7273.

Lerdthusnee K. (2017). Scrub Typhus. In conference on vector borne disease research moving towards Thailand 4.0: July. Nonthaburi, Thailand. (in Thai)

Lohsoonthron P. (2010). Epidemiology. Bangkok: Chulalongkorn University. (in Thai)

McFeeters, S. K. (2013). Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: A practical approach. Remote Sensing, 5(7), 3544-3561.

Mitchell A. (2005). The ESRI Guide to GIS Analysis. 2nd. Redlands: Calif.

Office of Disease prevention & control 1. GIS for national disease surveillance (report 506). Retrieved 2018 Jan 24, from http://223.27.246.155:8010/dpc10/index.php.

Phetsouvanh, R., Sonthayanon, P., Pukrittayakamee, S., Paris, D. H., Newton, P. N., Feil, E. J., & Day, N. P. (2015). The diversity and geographical structure of Orientia tsutsugamushi strains from scrub typhus patients in Laos. PLoS neglected tropical diseases, 9(8), e0004024

Richards, J. (1999). Remote Sensing Digital Image Analysis. Berlin: Springer-Verlag.

Ronysriyom Y, Prasatwit A, Rongsriyam K. (2003). Guide for classification of mites in Thailand. Bangkok: The Agricultural Cooperative Federation of Thailand. (in Thai)

Sirisukkarn N. (2008). Prevention and control of scrub typhus. Bangkok: War Veterans Organization. (in Thai)

Tipayamonkholgul M. (2012). Spatial Epidemiology in public health. Thai Journal of Public Health, 42(3), 44-54. (in Thai)

Wardrop, N. A., Kuo, C. C., Wang, H. C., Clements, A. C., Lee, P. F., & Atkinson, P. M. (2013). Bayesian spatial modelling and the significance of agricultural land use to scrub typhus infection in Taiwan. Geospatial health, 8(1), 229-239.

Wei, Y., Huang, Y., Luo, L., Xiao, X., Liu, L., & Yang, Z. (2014). Rapid increase of scrub typhus: an epidemiology and spatial-temporal cluster analysis in Guangzhou City, Southern China, 2006–2012. PLoS One, 9(7), e101976

Zanter, K. (2015). Landsat 8 (L8) data user’s handbook. US: Department of the Interior US Geological.

Downloads

Published

2022-12-07